Lizenz

Dieses Werk steht unter der folgenden Creative Commons Lizenz: Namensnennung-Nicht kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen 2.0 Deutschland

http://creativecommons.org/licenses/by-nc-sa/2.0/de/
Vorwort

Dieser Mitschrieb entstand während meiner Nachbearbeitung zur Mathematik 3 Vorlesung im Wintersemester 2007/2008 bei Prof. Dr. Peter Hauck an der Eberhard Karls Universität Tübingen.

Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Bei Verständnisschwierigkeiten zum Inhalt empfehle ich daher ausdrücklich, sich an die jeweiligen Dozenten/Tutoren zu wenden.

Wer Fehler findet, Verbesserungsvorschläge hat oder mir sonstige Anregungen mitteilen möchte, kann mir gerne eine E-Mail an folgende Adresse schicken:

rouvenwalter@web.de oder kontakt@rouven-walter.de
Danksagung

Mein Dank geht an Steffen Just, der einen wesentlichen Teil zu meinem Verständnis des Inhalts beigetragen hat, so dass es mir überhaupt möglich war die fehlenden Beweise im Anhang zu schreiben.

Ich möchte mich auch bei Alf Scotland bedanken, der viele Fehler im Skript ausfindig gemacht hat.
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Lizenz</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorwort</td>
<td>iii</td>
</tr>
<tr>
<td>Danksagung</td>
<td>iv</td>
</tr>
<tr>
<td>1. Ableitungs- und Integrationsregeln</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Winkelfunktionen</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Satz (Partielle Integration)</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Beispiel</td>
<td>4</td>
</tr>
<tr>
<td>1.4. Satz (Integration durch Substitution)</td>
<td>5</td>
</tr>
<tr>
<td>1.5. Beispiele</td>
<td>6</td>
</tr>
<tr>
<td>2. Uneigentliche Integrale</td>
<td>9</td>
</tr>
<tr>
<td>2.1. Definition</td>
<td>9</td>
</tr>
<tr>
<td>2.2. Beispiele</td>
<td>10</td>
</tr>
<tr>
<td>2.3. Satz</td>
<td>13</td>
</tr>
<tr>
<td>2.4. Beispiele</td>
<td>13</td>
</tr>
<tr>
<td>3. Der Satz von Taylor</td>
<td>15</td>
</tr>
<tr>
<td>3.1. Definition</td>
<td>16</td>
</tr>
<tr>
<td>3.2. Satz und Definition</td>
<td>17</td>
</tr>
<tr>
<td>3.3. Satz</td>
<td>18</td>
</tr>
<tr>
<td>3.4. Beispiele</td>
<td>19</td>
</tr>
<tr>
<td>3.5. Satz von Taylor</td>
<td>19</td>
</tr>
<tr>
<td>3.6. Korollar</td>
<td>20</td>
</tr>
<tr>
<td>3.7. Beispiel</td>
<td>20</td>
</tr>
<tr>
<td>3.8. Korollar</td>
<td>21</td>
</tr>
<tr>
<td>3.9. Definition</td>
<td>21</td>
</tr>
<tr>
<td>3.10. Satz</td>
<td>22</td>
</tr>
<tr>
<td>3.11. Bemerkung</td>
<td>23</td>
</tr>
<tr>
<td>3.12. Korollar</td>
<td>23</td>
</tr>
<tr>
<td>3.13. Beispiele</td>
<td>24</td>
</tr>
<tr>
<td>4. Fourrierreihen und Fouriertransformationen</td>
<td>27</td>
</tr>
<tr>
<td>4.1. Definition</td>
<td>27</td>
</tr>
<tr>
<td>4.2. Beispiele</td>
<td>27</td>
</tr>
</tbody>
</table>

Mitschrieb von Rouven Walter
Inhaltsverzeichnis

5.31. Beispiele .. 63
5.32. Satz .. 64
5.33. Satz (Dimensionsformel) 65
5.34. Beispiele .. 65

6. Vektorräume mit Skalarprodukt 67
6.1. Definition .. 67
6.2. Definition .. 67
6.3. Beispiele ... 68
6.4. Satz (Cauchy-Schwarz’sche Ungleichung) 69
6.5. Definition .. 70
6.6. Beispiele ... 71
6.7. Satz .. 72
6.8. Satz .. 73
6.9. Definition .. 73
6.10. Bemerkung .. 74
6.11. Beispiele ... 74
6.12. Definition .. 75
6.13. Satz .. 75
6.14. Theorem (Gram-Schmidt’sches Orthonormalisierungsverfahren) .. 76
6.15. Beispiele ... 77
6.16. Bemerkung .. 78
6.17. Satz .. 79
6.18. Definition .. 80
6.19. Satz .. 80
6.20. Bemerkung .. 81
6.21. Beispiel .. 81
6.22. Bemerkung .. 81

7. Lineare Abbildungen .. 82
7.1. Definition .. 82
7.2. Bemerkung .. 82
7.3. Beispiele .. 83
7.4. Satz .. 85
7.5. Satz .. 86
7.6. Beispiele .. 86
7.7. Satz .. 87
7.8. Beispiel .. 88
7.9. Satz .. 88
7.10. Korollar ... 89
7.11. Korollar ... 89
7.12. Satz .. 90
7.13. Definition .. 91
7.14. Satz .. 92
11.2. Folgerungen ... 147
11.3. Beispiel .. 148
11.4. Satz (Charakterisierung orthogonaler Abbildungen) 149
11.5. Definition .. 151
11.6. Folgerung .. 151
11.7. Satz ... 152
11.8. Satz ... 155
11.9. Bemerkung ... 156

12. Lineare Gleichungssysteme 159
12.1. Beispiel .. 159
12.2. Definition .. 159
12.3. Satz (Existenz einer Lösung eines LGS) 160
12.4. Beispiel .. 161
12.5. Satz ... 162
12.6. Beispiel .. 163
12.7. Satz ... 163
12.8. Satz ... 164
12.9. Lemma ... 165
12.10. Gauß-Algorithmus .. 165
12.11. Beispiel ... 167
12.13. Beispiel ... 171

13. Mehrdimensionale Analysis 173
13.1. Definition .. 173
13.2. Bemerkung ... 173
13.3. Beispiel .. 174
13.4. Beispiel .. 174
13.5. Definition .. 175
13.6. Satz ... 175
13.7. Satz ... 175
13.8. Beispiel .. 176
13.9. Definition .. 177
13.10. Definition .. 177
13.11. Beispiel ... 178
13.13. Beispiel ... 180
13.14. Definition .. 181
13.15. Beispiel ... 182
13.16. Satz (Schwarz) ... 182
13.17. Beispiel ... 183
13.18. Satz ... 183

Mitschrieb von Rouven Walter x
Inhaltsverzeichnis

13.20. Korollar .. 184
13.21. Definition 184
13.22. Definition 184
13.23. Satz ... 185
13.24. Beispiel .. 186
13.25. Geometrische Bedeutung von $\text{Grad}(f)$ 187
13.27. Definition 188
13.28. Satz ... 189
13.29. Beispiel .. 189

A. Fehlende Beweise 191
A.1. Beweis zum Lemma 5.3 b) c) 191
A.2. Beweis zur Bemerkung aus 6.2 192
A.3. Beweis zur Bemerkung aus 6.12a) 192
A.4. Beweis zu Satz 6.19 a) b) c) 193
A.5. Zwischenbeweis 195
A.6. Beweis zu Satz 7.5 a) b) c) 196
A.7. Beweis zu Satz 7.12 a) 197
A.8. Beweis zu Satz 8.8 198

B. Tabellen 201
B.1. Winkelfunktionen und ihre Werte 201
B.2. Ableitungen und Stammfunktionen bekannter Funktionen 201

Index 203

Mitschrieb von ROUVEN WALTER xi
1. Ableitungs- und Integrationsregeln

\(f : [a, b] \to \mathbb{R}, \ a, b \in \mathbb{R} \)
\(\int_a^b f(x) \, dx = \text{Flächeninhalt zwischen Graph von } f \text{ und der x-Achse auf } [a, b] \).
Regelfunktionen = integrierbare Funktionen auf \([a, b]\)
Stetige Funktion \(\Rightarrow \) Regelfunktion.

\(f : I \to \mathbb{R}, \ I \text{ Intervall.} \)
Lokal integrierbar, wenn \(f \) auf jeden abgeschlossenen Teilintervall \([u, v] \subseteq I, \ u, v \in \mathbb{R} \), integrierbar ist.
\(f \) lokal integrierbar \(\Rightarrow \exists \) Stammfunktion \(F \).
\([u, v] \subseteq I : \int_u^v f(t) \, dt = F[v] - F[u] \).
Stammfunktionen unterscheiden sich nur durch additive Konstante.
Bezeichnung: \(\int f(t) \, dt \)
\(f \) lokal integrierbar. Wähle \(x_0 \in I \).
\(F(x) = \int_{x_0}^x f(t) \, dt \)

Hauptsatz:

1) \(f \) stetig, so ist jede Stammfunktion differenzierbar.
\(F' = f \)
\(\left(\int f(t) \, dt \right)' = f \)

2) \(f \) stetig differenzierbar \(\Rightarrow \int f'(t) \, dt = f + c \)

1.1. Winkelfunktionen

a) \(\cos(x) \) hat erste positive Nullstelle bei \(\frac{\pi}{2} \).
\(\cos(x) \) hat erste negative Nullstelle bei \(-\frac{\pi}{2} \).
\(\tan(x) := \frac{\sin(x)}{\cos(x)} \quad \text{Tangensfunktion} \)
stetig differenzierbar auf \(-\frac{\pi}{2}, \frac{\pi}{2}\].

\[
\tan'(x) = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = 1 + \tan^2(x) > 0
\]

b) \(\tan(x)\) ist streng monoton wachsend auf \(-\frac{\pi}{2}, \frac{\pi}{2}\], Bild = \(\mathbb{R}\).

Umkehrfunktion:
\[
\arctan: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad \text{Arcustangens}
\]

Ableitung von \(f^{-1}\) (Mathe 2, 6.6; WHK 7.7):
\[
(f^{-1})'(f(u)) = \frac{1}{f'(u)}
\]

\[
\arctan'(\tan(u)) = \frac{1}{\tan'(u)} = \frac{1}{1 + \tan^2(u)}
\]

D.h.
\[
\arctan'(x) = \frac{1}{1 + x^2} \quad x \in \mathbb{R}
\]

Hauptsatz:
\[
\int \frac{1}{1 + x^2} \, dx = \arctan(x) + c
\]

c) \(\sin'(x) = \cos(x) > 0\) auf \(-\frac{\pi}{2}, \frac{\pi}{2}\], d.h. \(\sin(x)\) streng monoton wachsend auf \([-\frac{\pi}{2}, \frac{\pi}{2}\]

Umkehrfunktion:
\[
\arcsin: [-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad \text{Arcussinus}
\]
stetig und auf]−1, 1[stetig differenzierbar.
\[
\arcsin'(\sin(u)) = \frac{1}{\cos(u)}
\]
\[
= \frac{1}{\sqrt{1 - \sin^2(u)}}
\]
\[
\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}} \quad x \in]-1, 1[
\]
d) \(\cos(x)\) streng monoton fallend auf \([0, \pi]\), Bild \([-1, 1]\).
\[
\arccos : [-1, 1] \to [0, \pi] \quad \text{Arcuscosinus}
\]
stetig und auf]−1, 1[stetig differenzierbar.
\[
\arccos'(x) = -\frac{1}{\sqrt{1 - x^2}}
\]
\[
\arccos(x) = -\arcsin(x) + \frac{\pi}{2}
\]

1.2. Satz (Partielle Integration)

Seien \(f\) und \(g\) stetig differenzierbare Funktionen.

Dann gilt:
\[
\int f \cdot g' \, dx = f \cdot g - \int f' \cdot g \, dx
\]

Für das bestimmte Integral bedeutet das:
\[
\int_a^b f(x) \cdot g'(x) \, dx = [f(x) \cdot g(x)]_a^b - \int_a^b f'(x) \cdot g(x) \, dx
\]
\[
= f(b) \cdot g(b) - f(a) \cdot g(a) - \int_a^b f'(x) \cdot g(x) \, dx
\]

Beweis:

\[
(f \cdot g)' = f' \cdot g + f \cdot g'
\]

Hauptsatz:
\[
\int (f \cdot g)' \, dx = \int f' \cdot g \, dx + \int f \cdot g' \, dx
\]

\[= f \cdot g \]

Mitschrieb von Rouven Walter
1.3. Beispiel

a)
\[
\int \ln(x) \, dx = \int \ln(x) \cdot \frac{1}{g'} = g' \quad \text{wobei } g(x) = x
\]
\[
= \ln(x) \cdot x - \int \frac{1}{x} \cdot x \, dx = f' \quad \text{wobei } f(x) = 1.2 \ln(x) \cdot x - \frac{1}{x}
\]
\[
= \ln(x) \cdot x - x + c
\]

b)
\[
\int x \cdot \cos(x) \, dx = x \cdot \sin(x) - \int \frac{1}{g'} \cdot \sin(x) \, dx = f' \quad \text{wobei } f(x) = \sin(x) \quad \text{und } g(x) = \cos(x)
\]
\[
= x \cdot \sin(x) + \cos(x) + c
\]

c)
\[
\int \cos^2(x) \, dx = \cos(x) \cdot \sin(x) - \int -\sin(x) \cdot \sin(x) \, dx = \cos(x) \cdot \sin(x) + \int \sin^2(x) \, dx
\]
\[
\text{wobei } f = \cos(x), f' = -\sin(x), g' = \cos(x), g = \sin(x).
\]
Noch einmal partielle Integration anwenden auf \(\int \sin^2(x) \, dx \), wobei \(\tilde{f} = \sin(x), \quad \tilde{f}' = \cos(x), \quad \tilde{g}' = \sin(x), \quad \tilde{g} = -\cos(x) \):
\[
\int \cos^2(x) \, dx = \cos(x) \sin(x) - \sin(x) \cos(x) + \int \cos^2(x) \, dx
\]
\[
= \int \cos^2(x) \, dx \quad \text{Pech!}
\]

Erneuter Versuch mit anderer Umformung:
\[
\int \cos^2(x) \, dx = \cos(x) \cdot \sin(x) + \int (1 - \cos^2(x)) \, dx
\]
\[
= \cos(x) \cdot \sin(x) + x - \int \cos^2(x) \, dx
\]
\[
2 \cdot \int \cos^2(x) \, dx = \cos(x) \cdot \sin(x) + x + c
\]
\[
\int \cos^2(x) \, dx = \frac{\cos(x) \cdot \sin(x) + x}{2} + c
\]
1.4. Satz (Integration durch Substitution)

Sei $f : [a, b] \rightarrow [c, d]$ stetig differenzierbar, sei $g : [c, d] \rightarrow \mathbb{R}$ stetig und mit Stammfunktion G. Dann gilt:

$$\int g(f(x)) \cdot f'(x) \, dx = G(f(x)) + c$$

Für das bestimmte Integral bedeutet das:

$$\int_a^b g(f(x)) \cdot f'(x) \, dx = G(f(b)) - G(f(a))$$

$$= \int_{f(a)}^{f(b)} g(u) \, du$$

Beweis:

Es ist $G \circ f$ differenzierbar (G differenzierbar, da g stetig; Hauptsatz).

Mit der Kettenregel gilt:

$$(G \circ f)'(x) = G'(f(x)) \cdot f'(x)$$

Hauptsatz: $G \circ f$ ist Stammfunktion von $g(f(x)) \cdot f'(x)$.

Behauptung folgt.

Merkregel:

Ersetze in

$$\int g(f(x)) \cdot f'(x) \, dx$$

$f(x)$ durch

$$\frac{du}{dx} = f'(x)$$

$$du = f'(x) \, dx$$

oder:

Ersetze in

$$\int g(u) \cdot du$$

u durch $f(x)$

$$du \text{ durch } f'(x) \, dx$$
1.5. Beispiele

a) Sei f stetig differenzierbar auf I, $f(x) \neq 0$ für alle $x \in I$. Dann gilt:

$$\int f'(x) f(x) \, dx = \ln(|f(x)|) + c$$

d.h.

$$\int_{a}^{b} \frac{f'(x)}{f(x)} \, dx = \ln(|f(b)|) - \ln(|f(a)|)$$

Beweis:

Setze $g(x) = \frac{1}{x}$. Dann $G(x) = \ln(|x|) + c$.

$$\int \frac{f'(x)}{f(x)} \, dx = \int g(f(x)) \cdot f'(x) \, dx$$

Hauptsatz

$$= G(f(x)) + c$$

$$= \ln(|f(x)|) + c$$

b) Es gilt:

$$\int_{a}^{b} g(x + c) \, dx = \int_{a+c}^{b+c} g(x) \, dx$$

Setze $f(x) = x + c$, $f'(x) = 1$.

c) Sei $c \neq 0$, so gilt:

$$\int_{a}^{b} g(x \cdot c) \, dx = \frac{1}{c} \int_{a-c}^{b-c} g(x) \, dx$$

Substitutionsregel: $f(x) = x \cdot c$, $f'(x) = c$

$$\int_{a}^{b} g(x \cdot c) \, dx = \frac{1}{c} \int_{a}^{b} c \cdot g(x \cdot c) \, dx$$

$$= \frac{1}{c} \int_{a-c}^{b-c} g(x) \, dx$$
d) Sei $a \neq 0$. Was ergibt:
\[
\int \frac{1}{x^2 + a^2} \, dx = ?
\]
Setze $u = \frac{x}{a}$, $x = a \cdot u$
\[
\frac{du}{dx} = \frac{1}{a}, \quad dx = a \cdot du
\]
\[
\int \frac{1}{x^2 + a^2} \, dx = \int \frac{1}{a^2 \cdot u^2 + a^2} \cdot a \, du = \frac{1}{a} \int \frac{1}{u^2 + 1} \, du = \frac{1}{a} \cdot \arctan(u) + c = \frac{1}{a} \cdot \arctan\left(\frac{x}{a}\right) + c
\]

e) Sei $a \neq 0$, so gilt:
\[
\int \frac{x}{x^2 + a^2} \, dx = \frac{1}{2} \int \frac{2x}{x^2 + a^2} \, dx = \frac{1}{2} \ln(x^2 + a^2) + c
\]
Daraus folgt:
\[
\int \frac{1}{\sqrt{1 - u^2}} \cdot \arctan(x) \, dx = \int x \cdot \arctan(x) - \int x \cdot \frac{1}{x^2 + 1} \, dx = x \cdot \arctan(x) - \frac{1}{2} \cdot \ln(x^2 + 1) + c
\]
Man kann außerdem zeigen, dass gilt:
\[
\int \arcsin(x) \, dx = x \cdot \arcsin(x) + \sqrt{1 - x^2} + c
\]
f) Fläche des Halbkreises mit Radius 1:
Mittelpunkt des Kreises liegt im Koordinatenursprung.
\[
u^2 + v^2 = 1 \\
f(u) = +\sqrt{1 - u^2}, \quad [-1, 1]
\]
\[
\int_{-1}^{1} \sqrt{1 - u^2} \, du = ?
\]
Substitution mit $u = \sin(x) \Rightarrow x = \sin(u)^{-1}$,
\[\frac{du}{dx} = \cos(x), \quad du = \cos(x)dx, \quad \sqrt{1 - \sin^2(x)} = \cos(x). \]

\[\int_{-1}^{1} \sqrt{1 - u^2} du = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(x) dx \]

Substitution

\[= \int_{1.3}^{1} \cos^2(x) dx \]

\[= \left[\frac{\cos(x) \cdot \sin(x) + x}{2} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \]

\[= \frac{\pi}{4} + \frac{\pi}{4} \]

\[= \frac{\pi}{2} \]
2. Uneigentliche Integrale

Bestimmte Integrale:
\[[a, b], \quad a, b \in \mathbb{R}, \quad \int_a^b f(x) \, dx \] Flächeninhalt, \quad f(x) \text{ Regelfunktionen.}

Uneigentliche Integrale:
Flächeninhalt für offene/halboffene Intervalle \((a, b)\), wobei \(a = -\infty\) oder \(b = \infty\) erlaubt ist.

Beispiele:

a) \(f(x) = x^2 \), dann:
\[
\int_a^b x^2 \, dx = \frac{b^3}{3} - \frac{a^3}{3}
\]
\[
\int_{-\infty}^{\infty} x^2 \, dx = \infty
\]

b) \(f(x) = \sin(x) \)
Hat \(\int_{-\infty}^{\infty} \sin(x) \, dx \) Sinn? Nein!
\[
\int_a^b \sin(x) \, dx = \cos(b) - \cos(a), \text{ wenn } a, b \in \mathbb{R}
\]

c) \(f(x) = \frac{1}{x}, \quad [0, 1] \)
\[
\int_0^1 \frac{1}{x} \, dx = ?
\]
\[
\lim_{t \to 0} \int_t^1 \frac{1}{x} \, dx = ?
\]

2.1. Definition

a) Sei \(J = [a, b] \) (\(b = \infty \) ist zugelassen)
\(f : J \to \mathbb{R} \) sei lokal integrierbar auf \(J \) mit Stammfunktion \(F \).
\[
\int_a^b f(x) \, dx := \lim_{t \to b, t \leq b} \int_a^t f(x) \, dx
\]
\[
= \lim_{t \to b, t \leq b} (F(t) - F(a))
\]
falls der Grenzwert existiert.

Analog für $J = [a, b]$:

$$
\int_{a}^{b} f(x) \, dx = \lim_{t \to a, (t \geq a)} (F(b) - F(t))
$$

b) $J =]a, b[\, (a = -\infty, b = +\infty$ zugelassen).

Wähle $x_0 \in J$ und setze:

$$
\int_{a}^{b} f(x) \, dx = \lim_{t \to a} \int_{t}^{x_0} f(x) \, dx + \lim_{t' \to b} \int_{x_0}^{t'} f(x) \, dx
$$

$$
= \lim_{t \to a, (t \geq a)} (F(x_0) - F(t)) + \lim_{t' \to b, (t' \leq b)} (F(t') - F(x_0))
$$

falls beide Grenzwerte existieren.

(Addition des Integrals unabhängig von x_0)

In a) und b):

Falls Grenzwerte existieren, so: f ist über J integrierbar.

$$
\int_{a}^{b} f(x) \, dx \quad \text{uneigentliches Integral}
$$

2.2. Beispiele

a) $f(x) = \frac{1}{{+\sqrt{x}}}, J =]0, 1[.

$0 < t < 1$.

$$
\int_{t}^{1} \frac{1}{{\sqrt{x}}} \, dx = \int_{t}^{1} x^{-\frac{1}{2}} \, dx
$$

$$
= \left[2 \cdot x^{\frac{1}{2}} \right]_{t}^{1}
$$

$$
= 2 - 2 \cdot \sqrt{t}
$$

$$
\lim_{t \to 0} \int_{t}^{1} \frac{1}{{\sqrt{x}}} \, dx = \lim_{t \to 0} 2 - 2 \cdot \sqrt{t}
$$

$$
= 2
$$

$$
\int_{0}^{1} \frac{1}{{\sqrt{x}}} \, dx = 2
$$
b) $f(x) = \frac{1}{x^2}$, $J = [0, 1]$

Es gilt: $\frac{1}{x^2} \geq \frac{1}{\sqrt{x}}$ für $x \in [0, 1]$.

\[
\int_{t}^{1} \frac{1}{x^2} \, dx = \int_{t}^{1} x^{-2} \, dx = \left[-x^{-1}\right]_{t}^{1} = -1 + \frac{1}{t}
\]

\[
\lim_{t \to 0} \int_{t}^{1} \frac{1}{x^2} \, dx \quad \text{existiert nicht} \quad (= \infty)
\]

c) $f(x) = \frac{1}{e^x}$, $J = [0, \infty]$.

$t > 0$,

\[
\int_{0}^{t} \frac{1}{e^x} \, dx = \int_{0}^{t} e^{-x} \, dx = -\int_{0}^{t} e^{-x} \, dx
\]

Substitution mit:

$g(x) = e^x$, $f(x) = -x$

\[
-\int_{0}^{t} e^{-x} \, dx \quad \text{Substitution} \quad -\int_{0}^{t} e^u \, du \quad = \quad \int_{0}^{t} e^u \, du
\]

\[
= \left[e^u\right]_{0}^{t} = 1 - e^{-t} = 1 - \frac{1}{e^t}
\]

\[
\lim_{t \to \infty} \int_{0}^{t} \frac{1}{e^x} \, dx = \lim_{t \to \infty} \left(1 - \frac{1}{e^t}\right) = 1
\]

\[
\int_{0}^{\infty} \frac{1}{e^x} \, dx = 1
\]
d) \(f(x) = \sin(x), \ J = [0, \infty[\)
\(t > 0 \).
\[
\int_0^t \sin(x) \, dx = [-\cos(x)]_0^t \\
= -\cos(t) + 1
\]
\[
\lim_{t \to \infty} \int_0^t \sin(x) \, dx \text{ existiert nicht.}
\]
\[
\int_0^\infty \sin(x) \, dx \text{ existiert nicht.}
\]
Daher:
\[
\int_{-\infty}^\infty \sin(x) \, dx \text{ existiert auch nicht.}
\]
Falsch ist folgendes Vorgehen:
\[
\int_{-t}^t \sin(x) \, dx = [-\cos(x)]_{-t}^t \\
= -\cos(t) + \cos(t) \\
= 0
\]
\[
\lim_{t \to \infty} \int_{-t}^t \sin(x) \, dx = 0
\]
e) \(f(x) = \frac{1}{1+x^2}, \ J = \mathbb{R} =]-\infty, \infty[\)
\[
\int_{-\infty}^\infty \frac{1}{1+x^2} \, dx = ?
\]
\[
\int_0^t \frac{1}{1+x^2} \, dx = [\arctan(x)]_0^t \\
= \arctan(t)
\]
\[
\lim_{t \to \infty} \int_0^t \frac{1}{1+x^2} \, dx = \lim_{t \to \infty} \arctan(t) \\
= \frac{\pi}{2}
\]
Analog:

\[
\int_{-\infty}^{0} \frac{1}{1+x^2} \, dx = \frac{\pi}{2}
\]

Also:

\[
\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \pi
\]

2.3. Satz

\(J = \langle a, b \rangle, f, g : J \to \mathbb{R} \).

a) Vergleichskriterium.

Ist \(|f(x)| \leq g(x) \quad \forall x \in J\), und ist \(g \) über \(J \) integrierbar und ist \(f \) lokal integrierbar auf \(J \), so gilt:

\[f \text{ und } |f| \text{ sind über } J \text{ integrierbar und}
\]

\[
\left| \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} |f(x)| \, dx
\]

\[
\leq \int_{a}^{b} g(x) \, dx
\]

b) Sind \(f \) und \(g \) über \(J \) integrierbar, \(\alpha, \beta \in \mathbb{R} \), so ist auch \(\alpha \cdot f + \beta \cdot g \) über \(J \) integrierbar.

\[
\int_{a}^{b} (\alpha \cdot f + \beta \cdot g) \, dx = \alpha \int_{a}^{b} f \, dx + \beta \int_{a}^{b} g \, dx
\]

c) Ist \(|f|\) über \(J \) integrierbar, \(g \) beschränkt und lokal integrierbar auf \(J \), so sind \(f \cdot g \) und \(|f| \cdot |g|\) über \(J \) integrierbar.

(Siehe WHK 7.53)

2.4. Beispiele

a) \(f(x) = e^{-\frac{x^2}{2}} \) ist über \(\mathbb{R} \) lokal integrierbar (da \(f \) stetig), \(\text{Gauß'sche Glockenkurve}^1 \).

\(^1 \text{Johann Carl Friedrich Gauß war ein deutscher Mathematiker (30.04.1777 - 23.02.1855)} \)
Es ist
\[e^{-\frac{x^2}{2}} = \frac{1}{e^{\frac{x^2}{2}}} \]
\[e^y = 1 + y + \frac{y^2}{2!} + \frac{y^3}{3!} + \ldots \]
\[\frac{1}{e^{\frac{x^2}{2}}} = \frac{1}{1 + x^2 + \frac{x^4}{2!} + \ldots} \]
\[\leq \frac{1}{1 + \frac{x^2}{2}} \]
\[= \frac{2}{2 + x^2} \]
\[\leq 2 \cdot \frac{1}{1 + x^2} \]
\[\frac{1}{1 + x^2} \text{ ist nach 2.2e) über ganz } \mathbb{R} \text{ integrierbar.} \]

Dann ist auch \(2 \cdot \frac{1}{1 + x^2} \) über ganz \(\mathbb{R} \) integrierbar. (2.3b)

2.3a):
\[\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \, dx \text{ existiert.} \]

Mit Methoden der Analysis mehrerer Variablen:
\[\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \, dx = \sqrt{2\pi} \]

(Beachte: Es gibt keine einfache Form für die Stammfunktion von \(e^{-\frac{x^2}{2}} \))

b) Sei \(\mu \in \mathbb{R}, \sigma > 0 \).

Setze:
\[f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

Mit a) und Substitutionsregel:
\[\int_{-\infty}^{\infty} f(x) \, dx = 1 \]

\(f \) ist die Dichtefunktion der Normalverteilung mit Mittelwert \(\mu \) und Standardabweichung \(\sigma \).

(Wichtige Funktion in der Stochastik)
3. Der Satz von Taylor

Potenzreihen (Mathe 2, 3.33) (um Entwicklungspunkt c):

$$\sum_{k=0}^{\infty} a_k (x - c)^k \quad a_k \in \mathbb{R}$$

$\exists R \geq 0$ (Konvergenzradius): (ggf. $R = \infty$)
Reihe konvergiert für $x \in [c - R, c + R]$.
Kann evtl. konvergieren an den Randpunkten.
Reihe divergiert für alle anderen x.

$[a, b] \subseteq]c - R, c + R[\quad a, b \in \mathbb{R}$
In $]c - R, c + R[$ wird durch Potenzreihe Funktion f definiert:

$$f(x) = \sum_{k=0}^{\infty} a_k (x - c)^k$$

f lässt sich auf $[a, b]$ gleichmäßig durch Polynom p approximieren.

$$p(x) = \sum_{k=0}^{n} a_k (x - c)^k$$

(n geeignet).

f ist in $]c - R, c + R[$ differentierbar (Mathe 2, 8.7).

$$f'(x) = \sum_{k=1}^{\infty} k \cdot a_k (x - c)^{k-1} \quad \text{Potenzreihe in }]c - R, c + R[$$

f ist unendlich oft differentierbar.

Beispiel:

$$e^x = \sum_{k=0}^{\infty} \frac{1}{k!} x^k \quad \text{wobei } c = 0$$

sin(x), cos(x).
Wobei für alle gilt $R = \infty$.

Mitschrieb von Rouven Walter
Umgekehrt:
Welche Funktionen lassen sich durch Potenzreihen darstellen?
Notwendige Bedingung:
Funktion muss unendlich oft differentierbar sein.

3.1. Definition

\[f : J \rightarrow \mathbb{R}, \text{ } J \text{ Intervall.} \]

a) Ist \(f \) differentierbar auf \(J \), so \(f' = f^{(1)} \) erste Ableitung von \(f \).
 Sei für \(n \geq 1 \) schon die \(n \)-te Ableitung \(f^{(n)} \) von \(f \) definiert (falls sie existiert).
 Ist \(f^{(n)} \) auf \(J \) differentierbar, so heißt \(f^{(n+1)} := (f^{(n)})' \) die \((n+1)\)-te Ableitung
 von \(f \) und \(f \) heißt \((n+1)\)-mal differentierbar.
 Ist \(f \) \(n \)-mal differentierbar für jedes \(n \in \mathbb{N} \), so heißt \(f \) unendlich oft differentierbar.

Schreibweise:
\(f'' \) statt \(f^{(2)} \), \(f''' \) statt \(f^{(3)} \), \(\frac{d^n f}{dx^n} \) statt \(f^{(n)} \)

b) Ist \(f \) \(n \)-mal differentierbar und \(f^{(n)} \) stetig, so heißt \(f \) \(n \)-mal stetig differentierbar.

Beispiel:
Jedes Polynom ist unendlich oft differentierbar.
Ebenso \(e^{px} \), \(\sin(x) \), \(\cos(x) \).

Ist \(f \) diffbar an Stelle \(c \), so ist
\[f(x) = f(c) + f'(c)(x - c) + R(x) \]
mit
\[\lim_{x \to c} \frac{R(x)}{x - c} = 0 \]
\[\frac{f(x) - f(c)}{x - c} = f'(c) + \frac{R(x)}{x - c} \]

Relativ gute Approximierbarkeit von \(f \) in der Nähe von \(c \) durch die Gerade \(y = f(c) + f'(c)(x - c) \) (Tangente).
Wobei \(y = T_1(x) \) und \(T_1(c) = f(c) \) und \(T'_1(c) = f'(c) \).

Mitschrieb von ROUVEN WALTER
f n-mal differentierbar, J $\rightarrow \mathbb{R}$, $c \in J$.
Es existiert eindeutig bestimmtes Polynom T_n von Grad $\leq n$ mit

\[T_n^{(i)}(c) = f^{(i)}(c) \quad i = 0, \ldots, n \]
\[f^{(0)} = f \]
\[f(x) = T_n(x) + R(x) \quad \text{mit } \lim_{x \to c} \frac{R(x)}{(x - c)^n} = 0 \]

3.2. Satz und Definition

$f : J \rightarrow \mathbb{R}$, J Intervall, n-mal differentierbar, $c \in J$.
Dann gibt es genau ein Polynom T_n vom Grad $\leq n$ (das von f und c abhängt) mit

\[T_n^{(i)}(c) = f^{(i)}(c) \quad i = 0, \ldots, n \]

Es ist

\[T_n(x) = f(c) + f'(c) \cdot (x - c) + \frac{f''(c)}{2!} \cdot (x - c)^2 + \ldots + \frac{f^{(n)}(c)}{n!} \cdot (x - c)^n \]
\[= \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} \cdot (x - c)^k \]

T_n heißt das n-te Taylorpolynom von f um den Entwicklungspunkt c.
Grad $T_n \leq n$.

Beweis:

Sei p Polynom vom Grad $\leq n$ mit $p^{(i)}(c) = f^{(i)}(c)$ wobei $i = 0, \ldots, n$.

\[p(x) = \sum_{k=0}^{n} a_k(x - c)^k \quad \text{(Jedes Polynom vom Grad $\leq n$ lässt sich so darstellen)} \]

\[f(c) = p(c) = a_0 \]

\[p'(x) = \sum_{k=1}^{n} k \cdot a_k(x - c)^{k-1} \]
\[f'(c) = p'(c) = 1 \cdot a_1 \]

Mitschrieb von Rouven Walter
\[p''(x) = \sum_{k=2}^{\infty} (k - 1) \cdot k \cdot a_k (x - c)^{k-2} \]

\[f''(c) = p''(c) \]

\[= 2! \cdot a_2 \quad \text{wobei} \quad a_2 = \frac{f''(c)}{2!} \]

In dieser Weise fortfahren (Induktion).
Man erhält \(p(x) = T_n(x) \) und es gilt:

\[T_n^{(i)}(c) = f^{(i)}(c) \quad \text{für alle} \quad i = 0, \ldots, n \]

3.3. Satz

\(J \) Intervall, \(f : J \to \mathbb{R} \), \(n \)-mal stetig differenzierbar, \(c \in J \). \(T_n \) \(n \)-tes Taylorpolynom zu \(f \) bezüglich Stelle \(c \).

Ist \(f(x) = T_n(x) + R(x) \), so gilt für das „Restglied“ \(R(x) \):

\[\lim_{x \to c} \frac{R(x)}{(x - c)^n} = 0 \]

Beweis:

\[\lim_{x \to c} \frac{R(x)}{(x - c)^n} = \lim_{x \to c} \frac{f(x) - T_n(x)}{(x - c)^n} \]

\[= \lim_{x \to c} \frac{f'(x) - T'_n(x)}{n \cdot (x - c)^{n-1}} \]

\[= \lim_{x \to c} \frac{f''(x) - T''_n(x)}{n!} \]

\[= \lim_{x \to c} \frac{f'''(x) - T'''_n(x)}{n!} \]

\[= \lim_{x \to c} \frac{f^{(n)}(x) - T^{(n)}(x)}{n!} \]

\[= 0 \]
3.4. Beispiele

a) \(f(x) = \exp(x), \ c = 0. \)

\[
T_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^k
\]

\[
= \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (x - 0)^k \quad \text{wobei } f^{(k)}(x) = \exp(x)
\]

\[
= \sum_{k=0}^{n} \frac{1}{k!} x^k
\]

Erste \((n + 1)\) Glieder der Potenzreihe von \(\exp(x)\).

b) \(f(x) = x^3 + x^2 + 1, \ c = 0. \)

\[
f' = 3x^2 + 2x
\]

\[
f'' = 6x + 2
\]

\[
f''' = 6
\]

\[
f^{(i)} = 0 \ \text{mit } i > 3
\]

\[
T_0(x) = T_1(x) = 1
\]

\[
T_2(x) = 1 + x^2
\]

\[
T_3(x) = 1 + x^2 + x^3
\]

\[
= T_4(x)
\]

\[
= \ldots
\]

3.5. Satz von Taylor

\(J \) Intervall, \(f : J \rightarrow \mathbb{R}, (n+1)\)-mal differentierbar, \(c \in J \).

\(T_n \) \(n \)-tes Taylorpolynom zu \(f \) bzgl. \(c \).

Dann gibt es zu jedem \(x \in J \) eine Zwischenstelle \(y \) zwischen \(x \) und \(c \) (\(y \) hängt von \(x \) ab) mit:

\[
R(x) = f(x) - T_n(x)
\]

\[
= \frac{f^{(n+1)}(y)}{(n+1)!} (x - c)^{(n+1)}
\]

\[
f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^k + \frac{f^{(n+1)}(y)}{(n+1)!} (x - c)^{(n+1)}
\]

\((Taylor-Entwicklung mit Restglied von \(f \) an der Stelle \(c \))\)
Beweis:

g(x) = (x - c)^{n+1}, 2. MSW (Mittelwertsatz) (Mathe 2, 6.13; WHK 7.40) auf $R^{(k)}$, $g^{(k)}$ anwendbar (im Intervall $[x, c]$ bzw. $[c, x]$).

\[
\frac{R(x)}{g(x)} = \frac{R(x) - R(c)}{g(x) - g(c)}
\]

für ein x_1 zwischen c und x

\[
= \frac{R'(x_1)}{g'(x_1)} - \frac{R'(c)}{g'(c)}
\]

für ein x_2 zwischen c und x

\[
= \ldots
\]

\[
= \frac{R^{(n)}(x_n) - R^{(n)}(c)}{g^{(n)}(x_n) - g^{(n)}(c)}
\]

\[
= \frac{R^{(n+1)}(x_{n+1})}{g^{(n+1)}(x_{n+1})}
\]

\[
= \frac{f^{(n+1)}(x_{n+1}) - T_n^{(n+1)}(x_{n+1})}{(n+1)!} \quad \text{wobei } T_n^{(n+1)}(x_{n+1}) = 0
\]

\[
y := x_{n+1} \text{ liegt zwischen } c \text{ und } x.
\]

\[
f(x) - T_n(x) = R(x)
\]

\[
= \frac{f^{(n+1)}(y)}{(n+1)!} (x - c)^{n+1}
\]

3.6. Korollar

$f : J \to \mathbb{R}$, J Intervall, f ist $(n+1)$-differentierbar.

f ist Polynom vom Grad $n \iff f^{(n)} \neq 0$, $f^{(n+1)} = 0$.

3.7. Beispiel

Wie groß muss man n wählen, dass gilt

\[
|e^{x} - T_n(x)| < \frac{1}{100}
\]

Mitschrieb von Rouven Walter
für $x \in [0,1]$ (T_n n-tes Taylorpolynom zu $\exp(x)$ an 0).

$$|\exp(x) - T_n(x)| \leq \max_{x,y \in [0,1]} \frac{|\exp(y)|}{(n+1)!} \cdot |x|^{n+1} = \frac{e}{(n+1)!} < \frac{2.27}{(n+1)!}$$

Wähle n so, dass $\frac{2.72}{(n+1)!} < \frac{1}{100}$. Dazu:

$(n+1)! > 272, \quad n = 5.$

$T_n(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120}$

Fehler $< \frac{1}{1000}$: $n = 6.$

3.8. Korollar

$f : J \to \mathbb{R}, \ J$ Intervall, $c \in J$.

f sei 2-mal stetig differentierbar auf J.

Ist $f'(c) = 0$ und $f''(c) < 0$, so ist $f(c)$ lokales Maximum.

Ist $f'(c) = 0$ und $f''(c) > 0$, so ist $f(c)$ lokales Minimum.

Beweis:

$f'(c) = 0, f''(c) < 0$.

Da f'' stetig, existiert δ mit $f''(x) < 0$ für alle $x \in \delta$ mit $|x - c| < \delta$.

Für diese x gilt:

$$f(x) = f(c) + \frac{f''(y)}{2}(x-c)^2 \quad \text{für } y \text{ zwischen } x \text{ und } c.$$

Außerdem ist $f''(y) < 0$.

$f(x) \leq f(c)$ für alle $x \in J$ mit $|x - c| < \delta$.

3.9. Definition

$f : J \to \mathbb{R}, \ J$ Intervall, f unendlich differentierbar, $c \in J$.

Dann heißt die Potenzreihe

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^k$$

Taylorreihe zu f (um Entwicklungspunkt c).
3.10. Satz

\[f : [a, b] \rightarrow \mathbb{R}, \ a < b, \ a, b \in \mathbb{R}, \ f \ \text{unendlich oft differentierbar.} \]

Dann sind alle \(f^{(k)} \) stetig auf \([a, b]\), insbesondere existiert

\[||f^{(k)}||_\infty := \max_{x \in [a, b]} |f^{(k)}(x)| \]

für jedes \(k \in \mathbb{N}_0 \) (Mathe 2, 5.9; WHK 6.24).

Es gelte

\[\lim_{k \to \infty} \frac{(b - a)^k}{k!} \cdot ||f^{(k)}||_\infty = 0 \]

Sei \(c \in [a, b] \). Dann konvergiert die Taylorreihe

\[\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x - c)^k \]

für alle \(x \in [a, b] \) und es gilt:

\[f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x - c)^k \]

(Darstellung von unendlich oft differentierbaren Funktionen auf beschränkten Intervallen durch ihre Taylorreihe)

Beweis:

\[T_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^k \]

Sei \(x \in [a, b] \). Nach 3.5 existiert \(y \) zwischen \(x \) und \(c \) mit

\[|f(x) - T_n(x)| = \frac{|f^{(n+1)}(y) \cdot (x - c)^{n+1}|}{(n + 1)!} \leq \frac{||f^{(n+1)}||_\infty \cdot (b - a)^{n+1}}{(n + 1)!} \]

Nach Voraussetzung gilt:

\[\lim_{n \to \infty} \frac{(b - a)^{n+1}}{(n + 1)!} \cdot ||f^{(n+1)}||_\infty = 0 \]

Behauptung folgt.
3.11. Bemerkung

Die Bedingung
\[\lim_{n \to \infty} \frac{(b-a)^n}{n!} \cdot ||f^{(n)}||_\infty = 0 \]

in 3.10 ist erfüllt, falls gilt:
\[\lim_{n \to \infty} \sqrt[n]{\frac{||f^{(n)}||_\infty}{n!}} < \frac{1}{b-a} \]

Beweis:

Sei
\[q = \lim_{n \to \infty} \sqrt[n]{\frac{||f^{(n)}||_\infty}{n!}} \cdot (b-a) < 1 \]

Sei \(q < q' < 1 \). Dann existiert
\[(b-a) \sqrt[n]{\frac{||f^{(n)}||_\infty}{n!}} \leq q' \]

für alle \(n \geq n_0 \) \((n_0 \text{ geeignet}) \).
\[\frac{(b-a)^n||f^{(n)}||_\infty}{n!} \leq (q')^n \quad \forall n \geq n_0 \]

Wobei \(\lim_{n \to 0} (q')^n = 0 \), da \(0 \leq q' < 1 \).
Behauptung folgt.

3.12. Korollar

Sei
\[\sum_{k=0}^{\infty} a_k(x-c)^k \]

Potenzreihe mit Konvergenzradius \(R > 0 \) und
\[f(x) := \sum_{k=0}^{\infty} a_k(x-c)^k \]
für $x \in]c-R, c+R[$.

Dann ist die Potenzreihe gerade die Taylorreihe von f (um Entwicklungspunkt c), d.h. $a_k = \frac{f^{(k)}(c)}{k!}$.

Beweis:

f darf man Gliedweise differenzieren, um f' zu erhalten (und entsprechend die höheren Ableitungen). $f^{(k)}(c) = k! \cdot a_k$.

3.13. Beispiele

a) Potenzreihen, mit denen \exp, \sin, \cos, definiert werden, sind gerade die Taylorreihen dieser Funktion (um $c = 0$).

$$\exp(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \ldots + \frac{x^k}{k!} + \ldots$$

b) $f(x) = \begin{cases} \exp(-\frac{1}{x^2}) & x \neq 0 \\ 0 & x = 0 \end{cases}$

f ist unendlich oft differenzierbar, $f^{(n)}(0) = 0$. Taylorreihe um $c = 0$ zu f:

$$f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \ldots = 0$$

Taylorreihe zu f konvergiert überall und zwar gegen 0, aber $f(x) \neq 0$ für alle $x \neq 0$.

c) $f(x) = \ln(x)$ für $x \in]0, \infty[$.

Sei $c > 0$.

Taylorreihe von f um Entwicklungspunkt c.

$$f'(x) = \frac{1}{x}$$
$$f''(x) = -\frac{1}{x^2}$$
$$f'''(x) = \frac{2}{x^3}$$
$$f^{(k)}(x) = (-1)^{k-1} \frac{(k-1)!}{x^k} \quad k \geq 1$$
Entwicklungspunkt um \(c \):

\[
\ln(c) + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}(k-1)!}{k! \cdot c^k} (x-c)^k = \ln(c) + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}(x-c)^k}{k \cdot c^k}
\]

Behauptung:

\[
\ln(x) = \ln(c) + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}k}{c^k} (x-c)^k
\]

für alle \(x \in]0, 2c[\).

Beweis:

Es ist \(\ln(x) \) Stammfunktion von \(\frac{1}{x} \) für \(x > 0 \), d.h.

\[
\int_{1}^{x} \frac{1}{t} \, dt = \ln(x) - \ln(1) = \ln(x) \quad (1)
\]

Wir beweisen zunächst für \(c = 1 \), d.h. \(x \in]0, 2[\).

Der Fall \(x = 2 \) muss gesondert behandelt werden.

(d.h. \(\ln(2) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \)).

Sei \(x \in]0, 2[\).

Für \(t \in]0, 2[\) ist \(|(t-1)| < 1 \), daher konvergiert die geometrische Reihe

\[
\sum_{k=0}^{\infty} (-1)^k (t-1)^k = \frac{1}{1 - (-t-1)} = \frac{1}{t} \quad (2)
\]

\[
\int \sum_{k=0}^{\infty} (-1)^k (t-1)^k \, dt = \left[M_{2,8,80}; W H K, 7, 38 \right] \sum_{k=0}^{\infty} \left(-1 \right)^{k} \frac{(t-1)^{k+1}}{k+1} + c
\]

d.h.

\[
\int_{1}^{x} \sum_{k=0}^{\infty} (-1)^k (t-1)^k \, dt = \sum_{k=0}^{\infty} \left(-1 \right)^{k} \frac{(x-1)^{k+1}}{k+1} \quad (3)
\]
(1), (2), (3) \Rightarrow \text{Behauptung folgt für } c = 1.

Allgemeiner Fall \(c > 0 \): \(x \in]0, 2c] \), so
\[
\ln(x) = \ln\left(c \cdot \frac{x}{c}\right) = \ln(c) + \ln\left(\frac{x}{c}\right)
\]

\(\frac{x}{c} \in]0, 2[\). Wende Fall \(c = 1 \) auf \(\frac{x}{c} \) statt \(x \) an.
\[
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \left(\frac{x}{c} - 1\right)^k = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{kc^k} (x - c)^k
\]

Für \(x > 2c \) divergiert
\[
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{kc^k} (x - c)^k
\]

\[
\sqrt[4]{\frac{(-1)^{k-1}(x - c)^k}{kc^k}} = \frac{x - c}{\sqrt[4]{kc}}
\]
\[
\lim_{k \to \infty} \frac{x - c}{\sqrt[4]{kc}} = \frac{x - c}{c} > 1 \quad \text{falls } x > 2c
\]

\[
\lim_{k \to \infty} \sqrt[4]{k} = 1 \quad \text{Mathe 2, 8.9}
\]

Wurzelkriterium: Mathe 2, 3.38: Divergenz.

\(\ln(x) \) unendlich oft differenzierbar auf \(]0, \infty[\).

Taylorreihe um \(c > 0 \):
Konvergiert nur \(]0, 2c] \) und stellt dort \(\ln(x) \) dar, konvergiert nicht auf ganz \(]0, \infty[\).
4. Fourierreihen und Fourriertransformationen

Erstes Ziel:
Approximation periodischer Funktionen $\mathbb{R} \to \mathbb{R}$ durch sin und cos Funktionen.

4.1. Definition
$f : \mathbb{R} \to \mathbb{R}$ heißt periodisch mit Periode $w \neq 0$, falls
$$f(t + w) = f(t)$$
für alle $t \in \mathbb{R}$.

4.2. Beispiele
a) $\sin(t), \cos(t)$ sind periodisch mit Periode 2π.
b) $\sin(rt), \cos(rt)$ sind periodisch mit Periode $\frac{2\pi}{r}$ ($r \neq 0$ fest).
c) Ist f periodisch mit Periode $w, w' > 0$, so ist
$$f_1(t) = f\left(\frac{wt}{w'}\right)$$
w'-periodisch.

$$f_1(t + w') = f\left(\frac{w(t + w')}{w'}\right)$$
$$= f\left(\frac{wt}{w'} + w\right)$$
$$= f\left(\frac{wt}{w'}\right)$$
$$= f_1(t)$$
Taylorreihen:
Darstellung von unendlich oft differenzierbaren Funktionen durch Potenzreihen (wenn möglich).

Fourierreihen:
Darstellung von periodischen Funktionen durch Reihen von Sinus- und Cosinusfunktionen.

4.3. Definition
Eine Reihe der Form
\[a_0 + \sum_{k=1}^{\infty} \left(a_k \cdot \cos \left(\frac{2\pi \cdot k \cdot t}{w} \right) + b_k \cdot \sin \left(\frac{2\pi \cdot k \cdot t}{w} \right) \right) \]
heißt (reelle) Fourierreihe (trigonometrische Reihe).
\(a_i, b_i \) heißen Fourierkoeffizienten der Reihe.
Alle auftretenden Funktionen sind \(w \)-periodisch.
\(\cos \left(\frac{2\pi \cdot k \cdot t}{w} \right), \sin \left(\frac{2\pi \cdot k \cdot t}{w} \right) \) sind \(\frac{2\pi}{w} \)-periodisch (4.2c): Also insbesondere auch \(w \)-periodisch. Maximale Amplitude von \(a_k \cdot \cos \left(\frac{2\pi \cdot k \cdot t}{w} \right) \) ist \(|a_k| \).

Fragen:
Welche \(w \)-periodischen Funktionen \(f \) lassen sich durch eine Fourierreihe darstellen?
Wie muss man \(a_i, b_i \) wählen?
(Taylor: \(a_k = \frac{f^{(k)}(c)}{k!} \))

4.4. Lemma (Additionstheorem)
\[
\begin{align*}
\sin(x + y) &= \sin(x) \cdot \cos(y) + \cos(x) \cdot \sin(y) \\
\cos(x + y) &= \cos(x) \cdot \cos(y) - \sin(x) \cdot \sin(y)
\end{align*}
\]
(Z.B. Potenzreihen und Cauchy-Produkte, etwa wie für \(\exp(x + y) = \exp(x) \cdot \exp(y) \), Mathe 2, 3.36b), mühselig)

4.5. Satz (Orthogonalitätsrelation)
Seien \(m, n \in \mathbb{Z} \). Dann:
a) \[\int_0^{2\pi} \sin(mx) \sin(nx) \, dx = \begin{cases} 0 & \text{falls } n \neq m \\ \pi & \text{falls } n = m \end{cases} \]

b) \[\int_0^{2\pi} \cos(mx) \cos(nx) \, dx = \begin{cases} 0 & \text{falls } n \neq m \\ \pi & \text{falls } n = m \end{cases} \]

c) \[\int_0^{2\pi} \sin(nx) \cos(mx) \, dx = 0 \]

Beweis:

Nur b):

\[\cos((m + n)x) = \frac{1}{2} \cos(mx) \cos(nx) - \frac{1}{2} \sin(mx) \sin(nx) \]

\[\cos((m - n)x) = \frac{1}{2} \cos(mx) \cos(nx) + \frac{1}{2} \sin(mx) \sin(nx) \]

Addition:

\[2 \cos(mx) \cos(nx) = \cos((m + n)x) + \cos((m - n)x) \]

\[\cos(mx) \cos(nx) = \frac{1}{2} \left[\cos((m + n)x) + \cos((m - n)x) \right] \]

\[\int_0^{2\pi} \cos(mx) \cos(nx) \, dx = \frac{1}{2} \int_0^{2\pi} \cos((m + n)x) \, dx + \frac{1}{2} \int_0^{2\pi} \cos((m - n)x) \, dx \]

\[\frac{1}{2} \int_0^{2\pi} \cos((m + n)x) \, dx = \frac{1}{2(m + n)} \int_0^{2\pi} \cos(x) \, dx \]

\[= \frac{1}{2(m + n)} [\sin(x)]_0^{2\pi(m+n)} \]

\[= 0 \quad \text{für } m+n \in \mathbb{N} \]
Also:

\[
\frac{1}{2} \int_0^{2\pi} \cos((m-n)x) \, dx = 0
\]

falls \(m - n \neq 0 \), d.h. \(m \neq n \).

Damit:

\[
\int_0^{2\pi} \cos(mx) \cos(nx) \, dx = 0
\]

falls \(m \neq n \).

\(m = n \):

\[
\int_0^{2\pi} \cos(mx) \cos(mx) \, dx = \frac{1}{2} \int_0^{2\pi} 1 \, dx
\]

\[
= \frac{1}{\pi} \int_0^{2\pi} 1 \, dx
\]

Bemerkung: Gleichmäßige Konvergenz

\((f_n)_{n\in\mathbb{N}}\) Folge von Funktionen.

Z.B.:

\[
f_n(t) = \frac{a_0}{2} + \sum_{k=1}^{n} \left(a_k \cos \left(\frac{2\pi kt}{w} \right) + b_k \sin \left(\frac{2\pi kt}{w} \right) \right)
\]

\((f_n)_{n\in\mathbb{N}}\) konvergiert gleichmäßig gegen \(f \) auf \(I \):

\[
\forall \varepsilon > 0 \exists n_0 : |f_n(x) - f(x)| < \varepsilon \quad \forall n \geq n_0
\]

für alle \(x \in I \).

\((n_0\ hängt\ nicht\ von\ x\ ab)\).

Punkweisekonvergenz (nicht unbedingt gleichmäßig):

\(\forall x : f_n(x) \to f(x) \).
Bemerkung: Konvergenz und Periodizität

Sei $w > 0$.
Angenommen die Fourierreihe

$$a_0 + \sum_{k=1}^{\infty} \left(a_k \cos \left(\frac{2\pi kt}{w} \right) + b_k \sin \left(\frac{2\pi kt}{w} \right) \right)$$

konvergiere gleichmäßig auf $[0, w]$ gegen f.
(Dann auch auf ganz \mathbb{R}, wegen der Periodizität der Fourierreihe).

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left(a_k \cos \left(\frac{2\pi kt}{w} \right) + b_k \sin \left(\frac{2\pi kt}{w} \right) \right)$$

für alle $t \in \mathbb{R}$.

4.6. Satz

Unter den obigen Voraussetzungen gilt:

$$a_k = \frac{2}{w} \int_{0}^{w} f(t) \cos \left(\frac{2\pi kt}{w} \right) \, dt \quad k \in \mathbb{N}_0$$

$$b_k = \frac{2}{w} \int_{0}^{w} f(t) \sin \left(\frac{2\pi kt}{w} \right) \, dt \quad k \in \mathbb{N}$$

Beweis:

Die Partialsummen $f_n(t)$ der Fourierreihe sind stetige Funktionen.
Wegen der gleichmäßigen Konvergenz ist dann auch f stetig. Dann ist f auch integrierbar auf $[0, w]$.
Man kann bei gleichmäßiger Konvergenz Integration und Summation vertauschen
(ähnlich wie bei Potenzreihen: M2, 8.8d); WHK 7.23).

$$\frac{2}{w} \int_{0}^{w} f(t) \cos \left(\frac{2\pi kt}{w} \right) \, dt = \frac{2}{w} \int_{0}^{w} \left[a_0 \cos \left(\frac{2\pi kt}{w} \right) \right] \, dt$$

$$+ \sum_{l=1}^{\infty} \left[a_l \cos \left(\frac{2\pi lt}{w} \right) \right] \, dt$$

$$+ \sum_{l=1}^{\infty} \left[b_l \sin \left(\frac{2\pi lt}{w} \right) \right] \cdot \cos \left(\frac{2\pi kt}{w} \right) \, dt$$

$$= \frac{a_0}{w} \int_{0}^{w} \cos \left(\frac{2\pi kt}{w} \right) \, dt$$

$$+ \sum_{l=1}^{\infty} \left[2 \cdot a_l \frac{1}{w} \int_{0}^{w} \cos \left(\frac{2\pi lt}{w} \right) \cos \left(\frac{2\pi kt}{w} \right) \right] \, dt$$

Mitschrieb von Rouven Walter
Mathematik 3 für (Bio-)Informatiker 4. Fourierreihen und Fouriertransformationen

\[+ \frac{2b_l}{w} \int_0^w \sin \left(\frac{2\pi lt}{w} \right) \cos \left(\frac{2\pi kt}{w} \right) dt \]
\[= \frac{a_0 w}{2\pi} \int_0^{2\pi} \cos(kt) dt \]
\[+ \sum_{l=1}^{\infty} \left[\frac{2a_l w}{w} \frac{2\pi}{2\pi} \int_0^w \cos(lt) \cos(kt) dt \right] + \frac{2b_l}{w} \frac{2\pi}{2\pi} \int_0^w \sin(lt) \cos(kt) dt \]

Ist \(k = 0 \):
Nach 4.5 sind die Integrale unter \(\Sigma \) alle = 0, da \(l \leq 1 \).
Es bleibt:
\[\frac{a_0}{2\pi} \int_0^{2\pi} 1 dt = a_0 \]

Ist \(k > 0 \):
\[\frac{a_0}{2\pi} \int_0^{2\pi} \cos(kt) dt = \frac{a_0}{2\pi} \int_0^{2\pi} \cos(kt) \cos(0t) dt \]
\[= 0 \]

Nach 4.5b)c) bleibt:
\[\frac{a_k}{\pi} \int_0^{2\pi} \cos(kt) \cos(kt) dt \]
\[= \frac{a_k}{\pi} \cdot \pi \]
\[= a_k \]

Analog mit \(b_k \)‘s.

Gegeben sei \(w \)-periodische Funktion \(f \).
Wann lässt sich \(f \) durch Fourierreihe darstellen?
Falls die Fourierreihe gleichmäßig gegen \(f \) konvergiert, dann sind \(a_k \), \(b_k \) (Fourierkoeffizienten) durch \(f \) bestimmt (nach 4.6).

4.7. Definition

Sei \(f \) \(w \)-periodische Funktion, integrierbar über \([0, w]\). (Dann lokal integrierbar auf ganz \(\mathbb{R} \), d.h. es existiert unbestimmtes Integral). Die Reihe
\[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos \left(\frac{2\pi kt}{w} \right) + b_k \sin \left(\frac{2\pi kt}{w} \right) \right) \]
mit

\[a_k = \frac{2}{w} \int_0^w f(t) \cos \left(\frac{2\pi k t}{w} \right) \, dt \quad k \in \mathbb{N}_0 \]

\[b_k = \frac{2}{w} \int_0^w f(t) \sin \left(\frac{2\pi k t}{w} \right) \, dt \quad k \in \mathbb{N} \]

heißt Fourierreihe zu \(f \).

Fragen:

1) Für welche \(t \) konvergiert diese Fourierreihe zu \(f \)?

2) Wenn Fourierreihe an der Stelle \(t \) konvergiert, konvergiert sie gegen \(f(t) \)?

3) Wenn Fourierreihe für alle \(t \) gegen \(f(t) \) konvergiert, konvergiert sie auch gleichmäßig?

4.8. Satz

Sei \(f : \mathbb{R} \to \mathbb{R} \) stetig und \(w \)-periodisch.
Sei \(f \) auf \([0, w]\) stückweise stetig differenzierbar.
(D.h. \(0 = t_0 < t_1 < \ldots < t_n = w \), so dass \(f_{[t_i, t_{i+1}]} \) stetig differenzierbar).

a) Fourierreihe zu \(f \) konvergiert auf \(\mathbb{R} \) gleichmäßig gegen \(f \).
 Insbesondere:

\[
f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos \left(\frac{2\pi k t}{w} \right) + b_k \sin \left(\frac{2\pi k t}{w} \right) \right)
\]

für alle \(t \in \mathbb{R} \). \(a_k, b_k \) wie in 4.7.

b) Ist \(f \) gerade, d.h. \(f(t) = f(-t) \) für alle \(t \in \mathbb{R} \), so \(b_k = 0 \) für alle \(k \), d.h.:

\[
f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos \left(\frac{2\pi k t}{w} \right)
\]

Reine Cosinus-Reihe.

c) Ist \(f \) ungerade, d.h. \(f(t) = -f(-t) \) für alle \(t \in \mathbb{R} \), so \(a_k = 0 \) für alle \(k \), d.h.:

\[
f(t) = \sum_{k=1}^{\infty} b_k \sin \left(\frac{2\pi k t}{w} \right)
\]

Reine Sinus-Reihe.

Mitschrieb von ROUVEN WALTER
Beweis:

a) Für stetig differenzierbare Funktionen siehe WHK 8.9.
 Allgemeiner Fall folgt daraus.

b)c) Nachrechnen.

4.9. Bemerkung

Für nicht-stetige Funktionen kann 4.8 nicht gelten (da Grenzfunktion bei gleichmäßiger Konvergenz stetig).

Für stetige f gilt 4.8 im Allgemeinen auch nicht:

- Fourrierreihe konvergiert an gewissen Stellen nicht.
- Fourrierreihe konvergiert an jeder Stelle, aber nicht gleichmäßig gegen f.
- Wenn Fourrierreihe an Stelle t konvergiert, dann gegen $f(t)$.

4.10. Beispiel

Dreieckskurve:

$$f(t) = \begin{cases} t & 0 \leq t \leq \pi \\ 2\pi - t & \pi < t \leq 2\pi \end{cases}$$

Periodisch fortsetzen auf \mathbb{R} durch $f(t + k \cdot 2\pi) = f(t)$ für alle $k \in \mathbb{Z}, t \in [0, 2\pi]$.

2π-periodisch, stetig, stückweise stetig differenzierbar.

$f(t) = f(-t)$ für alle $t \in \mathbb{R}$.

Also: $b_k = 0$ für alle k.

$$a_k = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \cos(kt) \, dt$$

$$= \frac{1}{\pi} \int_{0}^{\pi} t \cos(kt) \, dt + \frac{1}{\pi} \int_{\pi}^{2\pi} (2\pi - t) \cos(kt) \, dt$$

$$= \frac{2}{\pi} \int_{0}^{\pi} t \cos(kt) \, dt$$
\(k = 0: \)

\[
a_0 = \frac{2}{\pi} \int_0^{\pi} t \cos(0t) \, dt
\]
\[
= \frac{2}{\pi} \int_0^{\pi} t \, dt
\]
\[
= \frac{2}{\pi} \left[\frac{1}{2} t^2 \right]_0^\pi
\]
\[
= \pi - 0
\]
\[
= \pi
\]

\(k \leq 1: \)

\[
a_k = \frac{2}{\pi} \int_0^{\pi} t \cos(kt) \, dt
\]
\[
= \frac{2}{k\pi} \int_0^{k\pi} kt \cos(kt) \, dt
\]
\[
= \frac{2}{k^2\pi} \int_0^{k\pi} t \cos(kt) \, dt
\]
\[
= \frac{2}{k^2\pi} \left[t \cdot \sin(t) + \cos(t) \right]_0^{k\pi}
\]
\[
= \frac{2}{k^2\pi} \left[k\pi \sin(k\pi) + \cos(k\pi) - 1 \right]
\]
\[
= \begin{cases}
0 & k \text{ gerade} \\
-\frac{4}{k^2\pi} & k \text{ ungerade}
\end{cases}
\]

Nach 4.8:

\[
f(t) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{l=1}^{\infty} \frac{\cos((2l-1)t)}{(2l-1)^2}
\]

für alle \(t \).

Bestimmung von Grenzwerten mit Hilfe der Fourierreihe:

Speziell: \(t = 0: \)

\[
f(0) = 0
\]
\[
= \frac{\pi}{2} - \frac{4}{\pi} \sum_{l=1}^{\infty} \frac{1}{(2l-1)^2}
\]
\[
\sum_{l=1}^{\infty} \frac{1}{(2l-1)^2} = \frac{\pi^2}{8}
\]

\[
\sum_{k=1}^{\infty} \frac{1}{k^2} = \sum_{l=1}^{\infty} \frac{1}{(2l)^2} + \sum_{l=1}^{\infty} \frac{1}{(2l-1)^2} = \frac{1}{4} \sum_{l=1}^{\infty} \frac{1}{l^2} + \frac{\pi^2}{8}
\]

\[
\sum_{l=1}^{\infty} \frac{1}{(2l)^2} = 1 - \frac{1}{4} \sum_{l=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{8}
\]

\[
\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}
\]

4.11. Satz

\(f : \mathbb{R} \to \mathbb{R}\) \(w\)-periodisch und integrierbar über \([0, w]\).

Setze

\[
s_n(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos \left(\frac{2\pi kt}{w} \right) + b_k \sin \left(\frac{2\pi kt}{w} \right) \right)
\]

\(a_k, b_k\) Fourierreihen zu \(f\) (4.7).

\[
\lim_{n \to \infty} \frac{1}{w} \int_{0}^{w} (f(t) - s_n(t))^2 \, dt = 0
\]

Mittlere quadratische Abweichung

4.12. Beispiel

\(f(t) = t\) auf \([-\pi, \pi]\) periodisch fortsetzen durch \(f(t + k \cdot 2\pi) = f(t)\) für alle \(k \in \mathbb{Z}\), \(t \in [-\pi, \pi]\).

Fourierreihe:

\[
2 \cdot \sum_{k=1}^{\infty} (-1)^{k-1} \frac{\sin(kt)}{k}
\]
4.13. Bemerkung

Theorie der Fourierreihen über \mathbb{C}.

a) Dazu: Konvergenz von Reihen in \mathbb{C}; wie in \mathbb{R}. (Betrag = Betrag in \mathbb{C}).

Ebenso: $f : \mathbb{R} \to \mathbb{C}, f(t) = g(t) + i \cdot h(t), g, h : \mathbb{R} \to \mathbb{R}, g = \Re(f), h = \Im(f)$.

f integrierbar \iff g, h integrierbar.

$$\int_a^b f(t) \, dt = \int_a^b g(t) \, dt + i \cdot \int_a^b h(t) \, dt$$

f differenzierbar \iff g, h differenzierbar: $f' = g' + i \cdot h'$

b) Wie in \mathbb{R} wird die komplexe Exponentialfunktion definiert:

$$e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!} \quad z \in \mathbb{C}$$

konvergiert für alle $z \in \mathbb{C}$.

$$e^{z_1} \cdot e^{z_2} = e^{z_1+z_2}$$

$$(e^z)^n = e^{zn} \quad n \in \mathbb{N}_0$$

c) Es gilt die Euler’sche Formel: $t \in \mathbb{R}$

$$e^{it} = \cos(t) + i \cdot \sin(t)$$

$$|e^{it}| = \sqrt{\cos^2(t) + \sin^2(t)} = 1$$

$t = \pi$:

$$e^{i\pi} = -1$$

$$e^{i\pi} + 1 = 0$$

$e^{it} : \mathbb{R} \to \mathbb{C}, 2\pi$-periodisch, $e^{it} = e^{i(t+2k\pi)}, k \in \mathbb{Z}$.

Jede komplexe Zahl lässt sich schreiben:

$$z = r \cdot e^{it}$$

mit $r = |z| \in \mathbb{R}$ (Polardarstellung).
d) Als komplexe Fourierreihe einer 2π-periodischen Funktion $f : \mathbb{R} \rightarrow \mathbb{C}$ wird folgende Reihe bezeichnet:

$$
\sum_{k=-\infty}^{\infty} a_k \cdot e^{ikt}
$$

(Konvergenz: $\sum_{k=0}^{\infty} a_k \cdot e^{ikt}$ und $\sum_{l=1}^{\infty} a_{-l} \cdot e^{-ilt}$ konvergieren)

$$a_k = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) \cdot e^{-ikt} \, dt$$

Ist $f : \mathbb{R} \rightarrow \mathbb{R}$, so erhält man unsere Darstellung mit sin- und cos-Funktionen.

4.14. Fourriertransformationen

w-periodische Funktion f mit Fourierreihe $\sum_{k=-\infty}^{\infty} a_k \cdot e^{\frac{2\pi}{w}kt}$. Frequenzen $\frac{k}{w}$, Amplituden a_k.

Nicht-periodische Funktion $\Sigma \rightarrow \int$. Versuch, f darzustellen $f(t) = \int_{-\infty}^{\infty} g(u) \cdot e^{iut} \, du$.

Geeignetes g erhält man durch die sogenannte Fourriertransformationen.

Dazu muss f absolut integrierbar sein:

$\int_{-\infty}^{\infty} R(f), \int_{-\infty}^{\infty} J(f), \int_{-\infty}^{\infty} |f|$ existieren.

 Dann heißt $\hat{f} : \mathbb{R} \rightarrow \mathbb{C}$, $\hat{f}(u) = \int_{-\infty}^{\infty} f(x) \cdot e^{-iux} \, dx$ Fourriertransformation von f.

Satz

f stetig und absolut integrierbar und $\lim_{|x| \rightarrow \infty} f(x) = 0$ und ist \hat{f} absolut integrierbar, so

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(u) \cdot e^{iux} \, dx$$
5. Vektorräume

Lineare Algebra.
Grundbegriff: Vektorräume über Körper.
Beispiel von Körper: \(\mathbb{Q} \), \(\mathbb{R} \), \(\mathbb{C} \), \(\mathbb{Z}_p \) (\(p \) Primzahl)

5.1. Definition

Sei \(V \) eine Menge, \(K \) ein Körper.
Auf \(V \) sei eine Addition
\[
\begin{align*}
V \times V & \to V \\
(v, w) & \mapsto v + w
\end{align*}
\]
und eine Multiplikation mit Körperelementen (Skalaren)
\[
\begin{align*}
K \times V & \to V \\
(k, v) & \mapsto k \cdot v \in V
\end{align*}
\]
gegeben mit folgenden Eigenschaften:

1. \((V, +)\) ist kommutative Gruppe
2. Für alle \(v, w \in V \) und alle \(a, b \in K \) gilt:
 2a) \((a + b) \cdot v = a \cdot v + b \cdot v \)
 2b) \(a \cdot (v + w) = a \cdot v + a \cdot w \)
 2c) \((a \cdot b) \cdot v = a \cdot (b \cdot v) \)
 2d) \(1 \cdot v = v \)

Dann heißt \(V \) ein Vektorraum über \(K \) (K-Vektorraum).
Element von \(V \): Vektor.
Neutrales Element bzgl. + in \(V \): Nullvektor o.
5.2. Beispiele

a) Nullraum, $V = \{0\}, k \in K$,

\[k \cdot 0 = 0 \]

b) K Körper, $n \in \mathbb{N}$,

\[K^n = K \times \ldots \times K \]
\[= \left\{ \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) : x_i \in K \right\} \]

Wobei $\left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right)$ ein Spaltenvektor ist.

Es gilt:

\[(x_1, \ldots, x_n)^t = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) \]

Wobei das t für Transponieren steht.

\[\left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) + \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \right) := \left(\begin{array}{c} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{array} \right) \]

Für $k \in K$:

\[k \cdot \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) := \left(\begin{array}{c} k \cdot x_1 \\ \vdots \\ k \cdot x_n \end{array} \right) \]

(Speziell: $K = \mathbb{R}, n = 2$: \mathbb{R}^2)

c) Ortsvektoren in $\mathbb{R}^2, \mathbb{R}^3, K = \mathbb{R}$.

d) K ist K-Vektorraum.

e) V_1, \ldots, V_n K-Vektorräume (mit demselben K).

\[V_1 \times \ldots \times V_n = \{(v_1, \ldots, v_n) : v_i \in V_i\} \]
Addition:

\[(v_1, \ldots, v_n) + (v'_1, \ldots, v'_n) := (v_1 + v'_1, \ldots, v_n + v'_n)\]

Multiplikation:

\[k \cdot (v_1, \ldots, v_n) := (k \cdot v_1, \ldots, k \cdot v_n)\]

K-Vektorraum: \(V_1 \oplus \ldots \oplus V_n\) (äußere) direkte Summe von \(V_1, \ldots, V_n\).

f) \(K[x]\) ist \(K\)-Vektorraum.
 Addition: klar.
 Multiplikation:
 \[k \cdot \left(\sum_{i=0}^{n} a_i \cdot x^i \right) := \sum_{i=0}^{n} k \cdot a_i \cdot x^i\]

g) \(M\) Menge, \(K\) Körper.
 \(K^M = \{f : M \to K : f\ \text{Abbildung}\}\) wird \(K\)-Vektorraum durch:
 \(f, g \in K^M\). Definiere \(f + g\) durch:
 \[(f + g)(m) := f(m) + g(m)\]

 \(k \in K\). Definiere \(k \cdot f\) durch:
 \[(k \cdot f)(m) := k \cdot f(m)\]

\(\forall m \in M\).

5.3. Lemma

\(V\) \(K\)-Vektorraum, \(v \in V\), \(a \in K\).

a) \(0 \cdot v = o\)

b) \(a \cdot o = o\)

c) \((-1) \cdot v = -v\)
Beweis:

a)

\[0 \cdot v = (0 + 0) \cdot v = 0 \cdot v + 0 \cdot v \]

Da \((V, +)\) kommutative Gruppe:

\[o = 0 \cdot v - 0 \cdot v = (0 \cdot v + 0 \cdot v) - 0 \cdot v = 0 \cdot v + o = 0 \cdot v \]

b) c) Übungsaufgabe.

5.4. Definition

\(V \) \(K \)-Vektorraum.

a) \(v_1, \ldots, v_m \in V, a_1, \ldots, a_m \in K \), so heißt die Summe \(a_1 \cdot v_1 + \ldots + a_m \cdot v_m \in V \) Linearkombination von \(v_1, \ldots, v_m \) (mit Skalaren \(a_1, \ldots, a_m \)).

b) \(U \subseteq V, U \neq \emptyset \), heißt Unter(vektor)raum (Teilraum) von \(V \), falls gilt:

\[\forall u_1, u_2 \in U \forall a_1, a_2 \in K : \quad a_1 \cdot u_1 + a_2 \cdot u_2 \in U \]

(Äquivalent: \(U \) ist abgeschlossen bzgl. Addition und bzgl. Multiplikation mit Skalaren)

5.5. Bemerkung

Bedingung in 5.4 b) ist äquivalent zu:

\(U \) ist bzgl. Addition in \(V \) und bzgl. Multiplikation mit Skalaren selbst wieder Vektorraum.

Insbesondere: Jeder Unterraum enthält \(o \).

\[^{\text{1Im Anhang A befindet sich dazu ein von mir geführter Beweis.}} \]
5.6. Beispiele

a) V K-Vektorraum. $o \neq v \in V$.
$G = \{k \cdot v : k \in K\}$ Unterraum.

\[a_1(k_1v) + a_2(k_2v) =\]

\[= \begin{align*}
& a_1k_1v + a_2k_2v \\
& a_1k_1 + a_2k_2) \in G
\end{align*} \]

(Speziell: $V = \mathbb{R}^2, \mathbb{R}^3$.
Gerade durch 0.)

b) v, w beide $\neq o, v, w \in V$.
$E = \{k \cdot v + l \cdot w : k, l \in K\}$ ist Unterraum von V.
(Speziell: $V = \mathbb{R}^2, \mathbb{R}^3$)

c) $v, w \in V$.
$G' = \{w + k \cdot v : k \in K\}$ ist in Allgemeinen kein Unterraum.
(Speziell: $V = \mathbb{R}^2 = w + G$)

d) J Intervall in \mathbb{R}.
$\mathbb{R}^J = \{ f : J \rightarrow \mathbb{R} \}$, \mathbb{R}-Vektorraum.
$C(J) = \{ f : J \rightarrow \mathbb{R} : f \text{stetig} \} \subseteq \mathbb{R}^J$ Unterraum von \mathbb{R}^J.
$\{ f : J \rightarrow \mathbb{R} : f \text{ differenzierbar} \}$ Unterraum von $C(J)$.

5.7. Satz

V K-Vektorraum, U_1, U_2 Unterräume von V.

a)
$U_1 \cap U_2$ ist Unterraum

b)
$U_1 + U_2 := \{ u_1 + u_2 : u_1 \in U_1, u_2 \in U_2 \}$ ist Unterraum (Summe von U_1, U_2).
$(U_1 \subseteq U_1 + U_2 \text{ und } U_2 \subseteq U_1 + U_2)$

Beweis:
Klar.
5.8. Definition

Ist \(V \) \(K \)-Vektorraum, \(U_1, U_2 \) Unterräume von \(V \).
Falls \(V = U_1 + U_2 \) und \(U_1 \cap U_2 = \{0\} \), so heißt \(V \) \textit{(innere) direkte Summe} von \(U_1 \) und \(U_2 \):

\[
V = U_1 \oplus U_2
\]

\(U_1 \) heißt \textit{Komplement} zu \(U_2 \) (und umgekehrt).

5.9. Beispiel

a) \(V = K^2 \)

\[
U_1 = \left\{ a \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} : a \in K \right\} \\
= \left\{ \begin{pmatrix} a \\ 0 \end{pmatrix} : a \in K \right\}
\]

\[
U_2 = \left\{ b \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} : b \in K \right\} \\
= \left\{ \begin{pmatrix} 0 \\ b \end{pmatrix} : b \in K \right\}
\]

sind Unterräume.

\[
V = U_1 \oplus U_2
\]

\[
U_1 \cap U_2 = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}
\]

Wobei \(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \) Nullvektor.

\[
\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ b \end{pmatrix}
\]

\[
V = U_1 + U_2.
\]

\[
U_3 = \left\{ c \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} : c \in K \right\} \\
= \left\{ \begin{pmatrix} c \\ c \end{pmatrix} : c \in K \right\}
\]
\(U_3 \) ist Komplement zu \(U_1 \) (und auch zu \(U_2 \)), d.h. \(V = U_1 \oplus U_3 \).

\[
\begin{pmatrix} x \\ y \end{pmatrix} \in U_1 \cap U_3 \Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix} + \begin{pmatrix} c \\ 0 \end{pmatrix} = \begin{pmatrix} a + c \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

Also \(c = 0 \) und \(a = 0 \).

\[
U_1 \cap U_3 = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}
\]

\[
\begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix} + \begin{pmatrix} c \\ c \end{pmatrix} = \begin{pmatrix} a + c \\ c \end{pmatrix}
\]

\(c = s, \ a + c = r, \ a = r - s \).

\[
\begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} r - s \\ 0 \end{pmatrix} + \begin{pmatrix} s \\ s \end{pmatrix}
\]

\(V = U_1 + U_3 \)

b) \(V = \mathbb{R}^3 \).

\[
E_1 = \left\{ r \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} : r, s \in \mathbb{R} \right\}
\]

\[
E_2 = \left\{ t \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + u \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} : t, u \in \mathbb{R} \right\}
\]

\(E_1, E_2 \) sind Unterräume von \(\mathbb{R}^3 \).

\[
E_1 \cap E_2 = \left\{ v \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} : v \in \mathbb{R} \right\}
\]

\[
\neq \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}
\]
Beweis:

\[
\begin{pmatrix}
 r \\
 0 \\
 s
\end{pmatrix}
= \begin{pmatrix}
 u \\
 t + u \\
 u
\end{pmatrix}
= \begin{pmatrix}
 u \\
 0 \\
 u
\end{pmatrix}
\]

\[u = r, t + u = 0, u = s, t = -u.\]

\[E_1 + E_2 = \mathbb{R}^3\]

Beweis:

\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
= x \cdot \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}
+ z \cdot \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}
+ y \cdot \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}
+ 1 \cdot \begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}
\]

\[
(x - 1) \cdot \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}
+ (z - 1) \cdot \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}
+ (y - 1) \cdot \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}
+ 1 \cdot \begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}
\]

5.10. Satz

Sei \(V\) \(K\)-Vektorraum, \(U_1, U_2\) Unterräume. Dann sind äquivalent:

a) \(V = U_1 \oplus U_2\)

b) Jeder Vektor \(v \in V\) hat eindeutige Darstellung \(v = u_1 + u_2\) mit \(u_1 \in U_1, u_2 \in U_2\)

Beweis:

a) \(\Rightarrow\) b):

\[u_1, u'_1 \in U_1, u_2, u'_2 \in U_2.\]

\[v = u_1 + u_2 = u'_1 + u'_2\]
\[u_1 - u_1' = u_2' - u_2 \in U_1 \cap U_2 = \{ o \} \]

Also:
\[
\begin{align*}
 u_1 - u_1' &= o \\
 u_2' - u_2 &= o
\end{align*}
\]

Und damit:
\[
\begin{align*}
 u_1 &= u_1' \\
 u_2 &= u_2'
\end{align*}
\]

\[v = u_1 + u_2. \text{ Jeder } v \in V \text{ ist Summe von Vektoren aus } U_1 \text{ und } U_2. \]

b) ⇒ a):
\[V = U_1 + U_2. \]
Angenommen: \(o \neq v \in U_1 \cap U_2. \)
\[
\begin{align*}
 v &= v + o \\
 &= o + v
\end{align*}
\]

Widerspruch zur Eindeutigkeit, also \(U_1 \cap U_2 = \{ o \}. \)

5.11. Bemerkung

Verallgemeinerung von (innerer) direkter Summe auf mehr als 2 Unterräume.
\[V = U_1 \oplus \ldots \oplus U_n \iff V = U_1 + \ldots + U_n \]

d.h.
\[V = \{ u_1 + \ldots + u_n : u_i \in U_i \} \]

und
\[
\begin{align*}
 U_1 \cap U_2 + \ldots + U_n &= \{ o \} \\
 U_2 \cap U_1 + U_3 + \ldots + U_n &= \{ o \} \\
 \vdots \\
 U_n \cap U_1 + \ldots + U_{n-1} &= \{ o \}
\end{align*}
\]
d.h.

\[U_i \cap \sum_{j \neq i} U_j = \{o\} \]

Dann gilt 5.10 entsprechend.

5.12. Definition

\(V \) \(K \)-Vektorraum, \(M \subseteq V \).

a) Der von \(M \) erzeugte oder aufgespannte Unterraum \(\langle M \rangle_K \) ist die Menge aller (endlichen) Linearkombinationen, die man mit Elementen aus \(M \) bilden kann:

\[
\langle M \rangle_K = \left\{ \sum_{i=1}^{n} a_i \cdot v_i : a_i \in K, v_i \in M, n \in \mathbb{N} \right\}
\]

\[\langle \emptyset \rangle_K = \{o\} \]

b) Ist \(V = \langle M \rangle_K \), so heißt \(M \) ein **Erzeugendensystem** von \(V \).

Hat \(V \) ein endliches Erzeugendensystem, so heißt \(V \) **endlich erzeugbar** (oder **endlich erzeugt**).

5.13. Bemerkung

a) \(\langle M \rangle_K \) ist der kleinste Unterraum von \(V \), der \(M \) enthält.

b) \(U_1, U_2 \) Unterräume von \(V \), so ist

\[
\langle U_1 \cup U_2 \rangle_K = U_1 + U_2
\]

5.14. Beispiele

a) \(V = K^n \).

\[
e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \ldots, e_i = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ i \end{pmatrix}, \ldots, e_n = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}
\]

\[\langle e_1, \ldots, e_n \rangle_K = K^n \]
Mathematik 3 für (Bio-)Informatiker

5. Vektorräume

\[
\begin{pmatrix}
a_1 \\
\vdots \\
a_n
\end{pmatrix}
= \sum_{i=1}^{n} a_i \cdot e_i
= \begin{pmatrix}
a_1 \\
\vdots \\
0
\end{pmatrix} + \ldots + \begin{pmatrix}
0 \\
\vdots \\
a_n
\end{pmatrix}
\]

\(K^n\) ist endlich erzeugbarer Vektorraum.

b) \(K[x]\) \(K\)-Vektorraum.

\(K[x]\) ist nicht endlich erzeugt:

Angenommen \(f_1, \ldots, f_n \in K[x]\) mit \(K[x] = (f_1, \ldots, f_n)_K\).

Sei \(m = \max. \ \text{Grad}(f_i), i = 1, \ldots, n\). Dann:

Jedes Polynome in \((f_1, \ldots, f_n)_K\) hat höchstens Grad \(m\), d.h. \(x^{m+1} \notin (f_1, \ldots, f_n)_K\).

c)

\[K[x] = \langle x^i : i \in \mathbb{N}_0 \rangle_K\]

d) Gilt folgende Gleichung?

\[
\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \rangle_{\mathbb{R}} = \mathbb{R}^3
\]

Wenn ja, so müsste sich jeder Vektor \((x, y, z)^t \in \mathbb{R}^3\) als lineare Kombination der obigen 3 Vektoren darstellen lassen.

\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = a \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + b \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + c \cdot \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}
\]

\[
x = a + 3b + 2c \\
y = 2a + 2b + 3c \\
z = 3a + b + 4c
\]

\[
x = a + 3b + 2c \\
y - 2x = 0a - 4b - 1c \\
z - 3x = 0a - 8b - 2c
\]
\[x = a + 3b + 2c \\
\]
\[y - 2x = 0a - 4b - 1c \\
\]
\[-2y + x + z = 0 \\
\]

Also:
\[
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix} \notin \left< \begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 3 \\ 4 \end{pmatrix} \right>_\mathbb{R} =: U
\]

\[U = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x - 2y + z = 0 \right\} \\
\]
\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \text{ mit } x - 2y + z = 0.
\]

Setze z.B. \(c = 0, b = \frac{2x-y}{4} \) und
\[
a = x - 3b = x - \frac{6x - 3y}{4} = \frac{-2x + 3y}{4}
\]
\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{-2x + 3y}{4} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \frac{2x - y}{4} \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}
\]

Setze z.B. \(c = 1, b = \frac{2x-y-1}{4} \) und
\[
a = x - 2 - 3b = \frac{4x - 8 - 6x + 3y + 3}{4} = \frac{-2x + 3y - 5}{4}
\]
\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{-2x + 3y - 5}{4} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \frac{2x - y - 1}{4} \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}
\]

Mitschrieb von Rouven Walter
Z.B.:

\[
\begin{pmatrix}
1 \\
0 \\
-1
\end{pmatrix} = -\frac{1}{2} \begin{pmatrix}
2 \\
3
\end{pmatrix} + \frac{1}{2} \begin{pmatrix}
2 \\
1
\end{pmatrix} + 0 \cdot \begin{pmatrix}
3 \\
4
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 \\
0 \\
-1
\end{pmatrix} = -\frac{7}{4} \begin{pmatrix}
1 \\
3
\end{pmatrix} + \frac{1}{4} \begin{pmatrix}
2 \\
1
\end{pmatrix} + 1 \cdot \begin{pmatrix}
2 \\
3
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 \\
0
\end{pmatrix} = \frac{5}{4} \cdot \begin{pmatrix}
1 \\
2
\end{pmatrix} + \frac{1}{4} \cdot \begin{pmatrix}
3 \\
2
\end{pmatrix} + (-1) \cdot \begin{pmatrix}
2 \\
3
\end{pmatrix}
\]

5.15. Definition

\(V \) \(K \)-Vektorraum.

\(v_1, \ldots, v_n \in V \) heißen linear abhängig, wenn es \(a_1, \ldots, a_n \in K \) gibt, nicht alle gleich 0, so dass

\[a_1 \cdot v_1 + \ldots + a_n \cdot v_n = o \]

Gibt es solche Skalare nicht, so heißen \(v_1, \ldots, v_n \) linear unabhängig.

(Entsprechend \(\{v_1, \ldots, v_n\} \) linear abhängig / linear unabhängig).

Per Definition ist \(\emptyset \) linear unabhängig.

5.16. Beispiele

a) \(\begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix}, \begin{pmatrix}
3 \\
2 \\
1
\end{pmatrix}, \begin{pmatrix}
2 \\
3 \\
4
\end{pmatrix} \), sind linear abhängig in \(\mathbb{R}^3 \).

b) \(\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} \), sind linear unabhängig in \(K^3 \) (\(K \) beliebiger Körper).

Angenommen \(a, b, c \in K \) mit

\[a \cdot \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix} + b \cdot \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix} + c \cdot \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} \]
Es gilt:

\[
\begin{align*}
a \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + c \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} &= \begin{pmatrix} a \\ b \\ c \end{pmatrix}
\end{align*}
\]

Also \(a = 0, b = 0, c = 0\).

Allgemein: \(e_1, \ldots, e_n\) sind linear unabhängig in \(K^n\).

c) \(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3\) linear unabhängig.

\[
\begin{align*}
a \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + b \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + c \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} &= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
\end{align*}
\]

Es gilt:

\[
\begin{align*}
a \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + c \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} &= \begin{pmatrix} a + b \\ a + c \\ b + c \end{pmatrix}
\end{align*}
\]

Gleichungssystem:

\[
\begin{align*}
a + b &= 0 \\
a + c &= 0 \\
b + c &= 0
\end{align*}
\]

\[
\begin{align*}
a + b &= 0 \\
c - b &= 0 \\
b + c &= 0
\end{align*}
\]

\[
\begin{align*}
a + b &= 0 \\
c - b &= 0 \\
2c &= 0
\end{align*}
\]

Da \(2c = 0\), folgt \(c = 0\), \(b = 0\), \(a = 0\).

Mitschrieb von Rouven Walter
d) \[
\begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix}, \quad \begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix}, \quad \begin{pmatrix}
0 \\
1 \\
1
\end{pmatrix} \in \mathbb{Z}_2^3 \text{ linear abhängig.}
\]

\[
1 \cdot \begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix} + 1 \cdot \begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix} + 1 \cdot \begin{pmatrix}
0 \\
1 \\
1
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
\]

5.17. Lemma

V K-Vektorraum. $M = \{v_1, \ldots, v_n\}$ endliche Teilmenge von V.

a)
\[a \in M \Rightarrow M \text{ linear abhängig} \]

b) M linear abhängig, $\sum_{j=1}^n a_j \cdot v_j = 0$ mit $a_i \neq 0$, so
\[\langle M \rangle_K = \langle M \setminus \{v_i\} \rangle_K \]

c) M linear abhängig, $M \subseteq N \subseteq V$, N endlich, so ist N linear abhängig.

d) M linear unabhängig, $L \subseteq M$, so ist L linear unabhängig.

Beweis:

a) O.B.d.A.: $v_1 = o$. Also:
\[o = 1 \cdot o + 0 \cdot v_2 + \ldots + 0 \cdot v_n \]

b)
\[a_i v_i = -\sum_{j=1, j \neq i}^n a_j \cdot v_j \]
\[a_i \neq 0 \Rightarrow \exists a_i^{-1} \in K \]
\[v_i = 1 \cdot v_i = (a_i^{-1} \cdot a_i) \cdot v_i = a_i^{-1} \cdot (a_i \cdot v_i) = a_i^{-1} \left(-\sum_{j \neq i} a_j v_j \right) = \sum_{j \neq i} (-a_i^{-1} \cdot a_j) \cdot v_j \]
Zeigen: $(M)_K \subseteq \langle M \setminus \{v_i\} \rangle_K$
Sei $v \in \langle M \rangle_K$.

\[v = \sum_{j=1}^{n} b_j \cdot v_j \]
\[= b_i \cdot v_i + \sum_{j \neq i} b_j \cdot v_j \]
\[= b_i \left(\sum_{j \neq i} (-a_i^{-1} \cdot a_j) \cdot v_j \right) + \sum_{j \neq i} b_j \cdot v_j \]
\[= \sum_{j=1, j \neq i}^{n} (-b_i \cdot a_i^{-1} \cdot a_j + b_j) \cdot v_j \in \langle M \setminus \{v_i\} \rangle_K \]

\[
\begin{align*}
\text{c) } & M = \{v_1, \ldots, v_n\}, N = \{v_1, \ldots, v_n, v_{n+1}, \ldots, v_l\}. \\
& M \text{ linear abhängig: } \exists a_1, \ldots, a_n, \text{ nicht alle gleich } 0. \\
& o = a_1 \cdot v_1 + \ldots + a_n \cdot v_n + 0 \cdot v_{n+1} + \ldots + 0 \cdot v_l
\end{align*}
\]
Also ist N linear abhängig.

\[
\text{d) Klar.}
\]

5.18. Satz

V K-Vektorraum, $M = \{v_1, \ldots, v_n\} \subseteq V$.

\[
\begin{align*}
\text{a) } & M \text{ linear abhängig } \iff \text{Es gibt mindestens ein } v_i \in M \text{ mit } v_i \in \langle M \setminus \{v_i\} \rangle_K \\
& \text{(d.h. } (M)_K = \langle M \setminus \{v_i\} \rangle_K) \\
\text{b) } & M \text{ linear unabhängig } \iff \text{Zu jedem } v \in (M)_K \text{ gibt es eindeutig bestimmte } \\
& c_1, \ldots, c_n \in K \text{ mit } v = c_1 \cdot v_1 + \ldots + c_n \cdot v_n
\end{align*}
\]
Beweis:

a) \(\Rightarrow \): 5.17

\[
v_i = \sum_{j=1, j \neq i}^{n} c_j \cdot v_j
\]

\[
(-1) \cdot v_i + \sum_{j=1, j \neq i}^{n} c_j \cdot v_j = 0
\]

\(M \) linear abhängig.

b) \(\Rightarrow \):

\[
v \in \langle M \rangle_K, v = \sum_{i=1}^{n} c_i \cdot v_i = \sum_{i=1}^{n} d_i \cdot v_i
\]

\[
o = \sum_{i=1}^{n} d_i \cdot v_i - \sum_{i=1}^{n} c_i \cdot v_i
\]

\[
= \sum_{i=1}^{n} (d_i - c_i) \cdot v_i
\]

Da \(M \) linear unabhängig ist, folgt:

\(d_i - c_i = 0, i = 1, \ldots, n \), d.h. \(d_i = c_i \) \(\forall i \).

\(\Leftarrow \):

Angenommen \(\sum_{i=1}^{n} a_i \cdot v_i = o = \sum_{i=1}^{n} 0 \cdot v_i \)

\[
\Rightarrow a_i = 0 \ \forall i.
\]

\(\Rightarrow M \) linear unabhängig.

Bemerkung:

Definition der linearen Unabhängigkeit für unendliche Teilmengen \(M \subseteq N \):

Jede endliche Teilmenge von \(M \) ist linear unabhängig.

5.19. Definition

Sei \(V \) ein endlich erzeugbarer Vektorraum über \(K \).

Eine endliche Teilmenge \(B \) von \(V \) heißt **Basis** von \(V \), falls

(i) \(\langle B \rangle_K = V \)

(ii) \(B \) ist linear unabhängig

(Ist \(V = \{o\} \), so ist die leere Menge eine Basis von \(V \))
5.20. Beispiel

a) \[
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}, \\
\begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}, \\
\begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}
\] Basis von K^3 (K Körper).

\[
\begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix}, \\
\begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix}, \\
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}
\] ebenfalls Basis.

b) $V = \{ \sum_{i=0}^{3} a_i \cdot x^i : a_i \in K \}$ Unterraum von $K[x]$.

$\{1, x, x^2, x^3 \}$ Basis.

5.21. Satz (Existenz von Basen)

Beweis:

Sei M endlich, $V = \langle M \rangle_K$.

2 Fälle:

1. Ist M linear unabhängig, so ist M Basis.

2. Ist M linear abhängig, so existiert nach 5.18a) ein $v \in M$ mit $\langle M \rangle_K = \langle M \setminus \{v\} \rangle_K$.

Nach endlich vielen Schritten erhält man auf diese Weise eine Basis von V.

Weiteres Ziel:

Je zwei Basen haben gleich viele Elemente.

5.22. Lemma

V endlich erzeugter K-Vektorraum, $B = \{v_1, \ldots, v_n\}$ Basis von V.

Sei $o \neq w \in V$,

\[w = \sum_{i=1}^{n} a_i \cdot v_i \quad a_i \in K \]

Ist $a_j \neq 0$, so ist

\[(B \setminus \{v_j\}) \cup \{w\} \]

eine Basis von V.

Mitschrieb von Rouven Walter
Beweis:

\[a_j \cdot v_j = w - \sum_{i=1, i \neq j}^{n} a_i \cdot v_i \]

\(a_j \neq 0: \)

\[v_j = a_j^{-1} \cdot w - \sum_{i=1, i \neq j}^{n} a_j^{-1} \cdot a_i \cdot v_i \]

\(v \in V. \) Dann

\[
\begin{aligned}
v &= c_1 \cdot v_1 + \ldots + c_n \cdot v_n \quad c_i \in K \\
&= c_1 \cdot v_1 + \ldots + c_{j-1} \cdot v_{j-1} + c_j \cdot a_j^{-1} \cdot w \\
&\quad + \sum_{i=1, i \neq j}^{n} c_j \cdot a_j^{-1} \cdot a_i \cdot v_i + c_{j+1} \cdot v_{j+1} + \ldots + c_n \cdot v_n \\
&= c_j \cdot a_j^{-1} \cdot w + \sum_{i=1, i \neq j}^{n} (c_i + c_j \cdot a_j^{-1} \cdot a_i) \cdot v_i
\end{aligned}
\]

Also gilt: \(\langle B \setminus \{v_j\} \cup \{w\} \rangle_K = V. \)

Sei

\[
\begin{aligned}
b \cdot w + \sum_{i=1, i \neq j}^{n} b_i \cdot v_i &= o
\end{aligned}
\]

wobei \(b, b_i \in K. \)

\[
\begin{aligned}
\sum_{i=1}^{n} b \cdot a_i \cdot v_i + \sum_{i=1, i \neq j}^{n} b_i \cdot v_i &= 0 \\
b \cdot a_j \cdot v_j + \sum_{i=1, i \neq j}^{n} (b \cdot a_i + b_i) \cdot v_i &= 0
\end{aligned}
\]

\(v_1, \ldots, v_n \) linear unabhängig \(\Rightarrow b \cdot a_j = 0, b \cdot a_i + b_i = 0 \) mit \(i = 1, \ldots, n, i \neq j. \)

\(a_j \neq 0 \Rightarrow b = 0, \quad b_i = 0, \quad i = 1, \ldots, n, i \neq j. \)

\(\Rightarrow \langle B \setminus \{v_j\} \cup \{w\} \rangle \) ist linear unabhängig.

Also: \(\langle B \setminus \{v_j\} \cup \{w\} \rangle \) ist Basis von \(V. \)
5.23. **Satz (Steinitz’scher Austauschsatz)**

Ist M endlich linear unabhängige Teilmenge von V. Dann existiert $C \subseteq B$, $|C| = |M|$, so dass $(B \setminus C) \cup M$ eine Basis von V ist.

Also insbesondere $|M| \leq |B|$.

Beweis:

Sei $|M| = k$. Induktion nach k.

IA: Für $k = 0$ stimmt.

IS: $k - 1 \rightarrow k$.

$M = \tilde{M} \cup \{w\}$, $|\tilde{M}| = k - 1$. \tilde{M} linear unabhängig.

Per Induktion existiert $\hat{C} \subseteq B$, $|\hat{C}| = |\tilde{M}| = k - 1$, so dass $(B \setminus \hat{C}) \cup \tilde{M}$ Basis ist.

Seien $a_u, a_v \in K$:

$$w = \sum_{u \in B \setminus \hat{C}} a_u \cdot u + \sum_{v \in \tilde{M}} a_v \cdot v$$

Angenommen: $a_u = 0$ für alle $u \in B \setminus \hat{C}$.

$$w = \sum_{v \in \tilde{M}} a_v \cdot v$$

$(-1) \cdot w + \sum_{v \in \tilde{M}} a_v \cdot v = 0$

Widerspruch zur linearen Unabhängigkeit von M, da $(-1) \neq 0$.

5.22: Man kann in $(B \setminus \hat{C}) \cup \tilde{M}$ u durch w ersetzen.

$C = \hat{C} \cup \{u\}$: $(B \setminus C) \cup M$ ist Basis von V.

$|C| = |M|$.

5.24. **Korollar**

Sei V endlich erzeugbarer K-Vektorraum.

a) Jede Basis von V enthält gleich viele Elemente.

b) Jede linear unabhängige Teilmenge von V ist endlich.

c) (Basisergänzungssatz)

Jede linear unabhängige Teilmenge von V lässt sich zu Basis von V ergänzen.
Beweis:

a) B, \tilde{B} Basen von V.

5.23: $|\tilde{B}| \leq |B|$ und $|B| \leq \tilde{B}$.

Wählen $M_0 \subseteq M$ mit $|M_0| > |B|$, M_0 endlich. Widerspruch zu 5.23.

c) M linear unabhängig, Teilmenge von V.

5.23: Existiert $C \subseteq B$, $|C| = |M|$ mit $(B \setminus C) \cup M$ Basis von V.

Ergänzung

5.25. Korollar

Sei V endlich erzeugbarer K-Vektorraum, U Unterraum von V.

Dann existiert Unterraum W von V mit $V = U \oplus W$.

Beweis:

5.21: U besitzt Basis $M = \{u_1, \ldots, u_k\}$.

M ist linear unabhängig.

5.24c): Existiert $N \subseteq V$ linear unabhängig, so dass $M \cup N$ Basis von V ($M \cap N = \emptyset$).

$W = \langle N \rangle_K$. Dann: $V = U \oplus W$.

$N = \{w_1, \ldots, w_l\}$.

$U \cap W = \{o\}$: Sei $v \in U \cap W$.

\[
v = \sum_{i=1}^{k} a_i \cdot u_i = \sum_{i=1}^{k} b_i \cdot w_i\]

Daraus folgt:

\[
\sum_{i=1}^{k} a_i \cdot u_i + \sum_{i=1}^{l} (-b_i) \cdot w_i = o
\]

$M \cup N$ ist linear unabhängig: $a_1 = \ldots = a_k = 0, b_1 = \ldots = b_l = 0$.

$U + W = V$: $M \cup N$ Basis von V.

\[
v = \sum_{i=1}^{k} c_i \cdot u_i + \sum_{i=1}^{l} d_i \cdot w_i\]

\mbox{Mitschrieb von ROUVEN WALTER}
5.26. Definition

Sei V K-Vektorraum.

a) Ist V endlich erzeugbar, B Basis von V, $|B| = n$:
V hat Dimension n,

\[\dim(V) = n \]

(Sinnvolle Definition nach 5.24a)

b) Ist V nicht endlich erzeugbar, so heißt V unendlich dimensional.

5.27. Beispiele

a) In K^n bilden die Vektoren $e_i := \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$ (mit 1 an i-ter Stelle), $i = 1, \ldots, n$, die sogenannte kanonische Basis von K^n.

\[\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = a_1 e_1 + \ldots + a_n e_n \]

\[\dim(K^n) = n \]

b) \mathbb{R}^3, $\{e_1, e_2, e_3\}$ Basis.

\[e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \]

\[e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \]

\[e = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \]
\[
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} = a e_1 + b e_2 + c e
\]
\[
= \begin{pmatrix} a + c \\ b + c \\ c \end{pmatrix}
\]

Daraus folgt:
\[c = 0, \quad b = 0, \quad a = 0.\]
\[
\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix} = x_1 e_1 + x_2 e_2 + x_3 e
\]
\[
= \begin{pmatrix} x_1 + x_3 \\ x_2 + x_3 \\ x_3 \end{pmatrix}
\]
\[x_3 = a_3, \quad x_2 + x_3 = a_2, \quad x_2 = a_2 - a_3 \]
\[x_1 + x_3 = a_3, \quad x_1 = a_1 - a_3 \]
\[
\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix} = (a_1 - a_3)e_1 + (a_2 - a_3)e_2 + a_3 e
\]

Also ist \(\{e_1, e_2, e\}\) Basis von \(\mathbb{R}^3\).

c) \(K[x]\) ist unendlich dimensionaler Vektorraum (5.14b)

d) \(V = \mathbb{R}^4, U = \langle (1, 2, 0, 1)^t, (0, 2, 1, 0)^t \rangle_{\mathbb{R}}\).
\(u_1, u_2\) sind linear unabhängig, Basis von \(U\).
Ergänze \(u_1, u_2\) zu Basis von \(V\):
\(e_1, e_2, e_3, e_4\) Basis von \(\mathbb{R}^4\).
\[u_1 = 1e_1 + 2e_2 + 0e_3 + 1e_4\]

5.22: \(u_1, e_2, e_3, e_4\) Basis von \(\mathbb{R}^4\).
\[(0, 2, 1, 0)^t = u_2 \]
\[= au_1 + be_2 + ce_3 + de_4 \]

\(u_1, e_2, e_4\) haben an dritter Stelle eine 0.
Daher muss \(e_3\) an dritter Stelle eine 1 haben.
5.22: \(u_1, e_2, u_2, e_4\) Basis von \(\mathbb{R}^4\).
\(u_1, u_2\) durch \(e_2, e_4\) zu Basis ergänzt.
Andere Möglichkeit beruht auf:

\[v_1, \ldots, v_k \text{ linear unabhängig.} \]
\[v \notin \langle v_1, \ldots, v_k \rangle_K \Rightarrow v_1, \ldots, v_k, v \text{ linear unabhängig.} \]
\[\sum_{i=1}^{k} a_i v_i + a v = 0 \]

Wenn \(a \neq 0 \), so

\[v = \sum_{i=1}^{k} -a^{-1} a_i v_i \in \langle v_1, \ldots, v_k \rangle_K \]

Das ist ein Widerspruch. medskip

Also: \(a = 0 \Rightarrow a_1 = \ldots = a_k = 0 \), da \(v_1, \ldots, v_n \) linear unabhängig.

\[U = \langle u_1, u_2 \rangle = \left\{ \begin{pmatrix} a \\ 2a + 2b \\ b \\ a \end{pmatrix} : a, b \in \mathbb{R} \right\} \]

\[e_1 \notin U. u_1, u_2, e_1 \text{ linear unabhängig.} \]

\[\langle u_1, u_2, e_1 \rangle = \left\{ \begin{pmatrix} a + c \\ 2a + 2b \\ b \\ a \end{pmatrix} : a, b, c \in \mathbb{R} \right\} \]

\[e_2 \notin \langle u_1, u_2, e_1 \rangle. u_1, u_2, e_1, e_2 \text{ linear unabhängig, also Basis von } \mathbb{R}^4. \]

5.28. Satz

\(V \) endlich erzeugbarer \(K \)-Vektorraum.

a) \(B \) Basis von \(V \) \iff \(B \) ist maximal linear unabhängige Teilmenge von \(V \).
 (d.h. falls \(B \subset C \subseteq V \), so \(C \) linear abhängig)

b) \(B \) Basis von \(V \) \iff \(B \) ist minimales Erzeugendensystem von \(V \).
 (d.h. falls \(B_0 \subset B \), so \(\langle B_0 \rangle_K \neq V \))
Beweis:

a) ⇒: 5.24a)c)

⇐: Angenommen ⟨B⟩_K ≠ V. v ∈ V \ ⟨B⟩_K. Dann B ∪ {v} linear unabhängig. Widerspruch zu 5.27d). Also ⟨B⟩_K = V.

b) ⇒: 5.18a)

⇐: 5.18a)

5.29. Korollar

\dim(V) = n, B \subseteq V, |B| = n.

a) Ist B linear unabhängig ⇒ B ist Basis

b) Ist ⟨B⟩_K = V ⇒ B ist Basis

5.30. Satz und Definition

V n-dimensionaler K-Vektorraum, B = \{v_1, \ldots, v_n\} Basis von V.

Jedes v ∈ V hat eindeutige Darstellung

\[v = \sum_{i=1}^{n} c_i \cdot v_i \]

mit c_i ∈ K.

(c_1, \ldots, c_n) heißen Koordinaten von V bzgl. B.

Beweis:

5.18b)

5.31. Beispiele

a) V = K^n, e_i = (0, \ldots, 0, 1, 0, \ldots, 0)^t mit 1 an i-ter Stelle, B = \{e_1, \ldots, e_n\} kanonische Basis.

Dann sind die Koordinaten von (a_1, \ldots, a_n)^t ∈ K^n bzgl B genau a_1, \ldots, a_n.

Kartesische Koordinaten (R. Descartes).

b) V = \mathbb{R}^3, B = \{(1, 2, 0)^t, (1, 0, 1)^t, (0, 1, 2)^t\}.

\[a \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + b \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + c \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \]
a + b = 0
2a + c = 0
b + 2c = 0

\[a = -b \]

2a + c = 0
\[-a + 2c = 0 \]

5c = 0, c = 0, b = 0, a = 0.
B linear unabhängig ⇒ B ist Basis von \(\mathbb{R}^3 \) (5.29).

Koordinaten von \((1, 0, 0)^t\) bzgl. B:

\[
\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}
\]

1 = c_1 + c_2
0 = 2c_1 + c_3
0 = c_2 + 2c_3

\[c_2 = -2c_3 \]

1 = c_1 - 2c_3
0 = 2c_1 + c_3

1 = 5c_1.
\[c_1 = \frac{1}{5}, \quad c_2 = \frac{4}{5}, \quad c_3 = -\frac{2}{5} \]

5.32. Satz

Sei \(V \) \(K \)-Vektorraum, \(\dim(V) = n \).

a) Ist \(U \) Unterraum von \(V \), so ist \(\dim(U) \leq n \)

b) Sind \(U, W \) Unterraume von \(V \), \(U \subseteq W \), \(\dim(U) = \dim(W) \), so ist \(U = W \)
Beweis:

a) Basis von U lässt sich zu Basis von V ergänzen (5.24)

b) Basis von $U = $ Basis von W \Rightarrow $U = W$

5.33. Satz (Dimensionsformel)

V endlich dimensionaler Vektorraum, U_1, U_2 Unterräume von V.

$$\dim(U_1 + U_2) = \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2)$$

Beweis:

B Basis von $U_1 \cap U_2$.

Ergänze B zu Basis von U_1: $B \cup B_1$.

Ergänze B zu Basis von U_2: $B \cup B_2$.

Nachrechnen:

$B \cup B_1 \cup B_2$ Basis von $U_1 + U_2$.

$$\dim(U_1 + U_2) = \dim(B) + \dim(B_1) + \dim(B_2) - \dim(B_1 \cap U_2)$$

(siehe WHK, 9.23)

5.34. Beispiele

a) $K = \mathbb{Z}_2$, $U_1 = \{(x, y, z)^t : x, y, z \in \mathbb{Z}_2, x + y + z = 0\}$, $V = \mathbb{Z}_2^3$, $U_2 = \{(x, x, x)^t : x \in \mathbb{Z}_2\}$.

U_1, U_2 Unterräume von V.

$$\dim(U_1) \leq 2 \text{ denn } U_1 \neq V$$

$$U_1 = \langle (1, 1, 0)^t, (0, 1, 1)^t \rangle_{\mathbb{Z}_2}$$

Wobei $(1, 1, 0)^t, (0, 1, 1)^t$ linear unabhängig.

$$U_2 = \langle (1, 1, 1)^t \rangle_{\mathbb{Z}_2}$$
\[
\begin{align*}
dim(U_1) &= 2 \\
dim(U_2) &= 1 \\
U_1 \cap U_2 &= \{0\}
\end{align*}
\]

Da \(\dim(U_1 \cap U_2) = 0\), \(\dim(U_1) = 2\), \(\dim(U_2) = 1\) gilt nach 5.33:

\[
\dim(U_1 + U_2) = 3
\]

Daraus folgt \(U_1 + U_2 = V\).

b) \(K = \mathbb{Z}_3 = \{0, 1, 2\}\), \(V = \mathbb{Z}_3^3\).

\[
U_1 = \{(x, y, z)^t : x, y, z \in \mathbb{Z}_3, x + y + z = 0\}
\]

\[
U_2 = \{(x, x, x)^t : x \in \mathbb{Z}_3\}
\]

\[
\dim(U_1) = 2
\]

\[
U_1 = \langle (1, 2, 0)^t, (0, 1, 2)^t \rangle
\]

Wobei \((1, 2, 0)^t\), \((0, 1, 2)^t\) linear unabhängig sind.

\[
U_2 = \langle (1, 1, 1)^t \rangle
\]

\(U_2 \subseteq U_1\), \(U_1 \cap U_2 = U_2\), \(U_1 + U_2 = U_1\).
6. Vektorräume mit Skalarprodukt

6.1. Definition

\[x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad y = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n. \]

Definierung des (Standard-) Skalarprodukts von \(x \) und \(y \):

\[(x|y) := x_1 \cdot y_1 + \ldots + x_n \cdot y_n \in \mathbb{R} \]

Es gilt:

\[(x|x) \geq 0 \]
\[(x|x) = 0 \iff x = o \]

\[(x|y) = (y|x) \]

\[(x|y + z) = (x|y) + (x|z) \]

\[(x|ay) = a(x|y) \quad a \in \mathbb{R} \]

6.2. Definition

\(V \mathbb{R} \)-Vektorraum. Abbildung

\[(.,.) : \begin{cases} V \times V \to \mathbb{R} \\ (v, w) \mapsto (v|w) \end{cases} \]

heißt Skalarprodukt auf \(V \), falls gilt:
(1) \[(v|v) \geq 0 \quad \forall v \in V \quad \text{(Definitheit)}\]

Ist \(v \neq 0\), so \((v|v) > 0\).

(2) \[(v|w) = (w|v) \quad \forall v, w \in V \quad \text{(Symmetrie)}\]

(3) \[(v|w + u) = (v|w) + (v|u) \quad \forall u, v, w \in V\]

\[(v|a \cdot w) = a \cdot (v|w) \quad \forall a \in \mathbb{R} \quad \text{Linearität im 2. Argument}\]

\(V\) heißt dann \textit{Skalarproduktraum} oder \textit{Euklidischer Vektorraum}.

\textbf{Bemerkung1:}

Wegen (2) und (3) gilt auch

\[(v + w|u) = (v|u) + (w|u)\]
\[(a \cdot v|u) = a \cdot (v|u)\]

für alle \(u, v, w \in V\) und für alle \(a \in \mathbb{R}\).

(Linearität im 1. Argument).

\section*{6.3. Beispiele}

a) Das Standard Skalarprodukt auf \(V = \mathbb{R}^n\) ist Skalarprodukt im Sinne von 6.2.

b) \(V\) \(n\)-dimensionaler Vektorraum über \(\mathbb{R}\), \(v_1, \ldots, v_n\) sei Basis von \(V\). \(v, w \in V\):

\[v = \sum_{i=1}^{n} a_i \cdot v_i\]
\[w = \sum_{i=1}^{n} b_i \cdot v_i\]

1Im Anhang A befindet sich dazu ein von mir geführter Beweis.
Definiere

\[(v|w) := \sum_{i=1}^{n} a_i \cdot b_i\]

Skalarprodukt auf \(V\).

Standard-Skalarprodukt \(\mathbb{R}^n\) ist von dieser Form, falls man für \(v_1, \ldots, v_n\) die kanonische Basis \(e_1, \ldots, e_n\) wählt.

c) \(V = C[a, b]\ \mathbb{R}\)-Vektorraum aller stetigen Funktionen \([a, b] \rightarrow \mathbb{R}\).

Definiere für \(f, g \in C[a, b]\):

\[(f|g) := \int_{a}^{b} f(t) \cdot g(t) \, dt \in \mathbb{R}\]

Das ist Skalarprodukt.

6.4. Satz (Cauchy-Schwarz’sche Ungleichung)

\(V\) Euklidischer Vektorraum. Dann gilt

\[(v|w)^2 \leq (v|v) \cdot (w|w) \quad v, w \in V \]

Gleichheit gilt genau dann, wenn \(v, w\) linear abhängig sind.

Beweis:

\(w = o\), so auf beiden Seiten 0. Dann sind auch \(v, w\) linear abhängig.

\[
(v|o) = (v|0 \cdot o) = 0 \cdot (v|o) = 0 \tag{3}
\]

Sei \(w \neq o\). Dann \((w|w) \neq 0\) nach (1).

\[a := \frac{(v|w)}{(w|w)} \in \mathbb{R} \]
\[0 \leq (v - a \cdot w|v - a \cdot w) \]
\[= (v - a \cdot w|v) - a \cdot (v - a \cdot w|w) \]
\[= (v|v) - a \cdot (w|v) - a \cdot (v|w) + a^2 \cdot (w|w) \]
\[= (v|v) - 2a \cdot (v|w) + a^2 \cdot (w|w) \]
\[= \text{Def. von } a (v|v) - 2 \cdot \frac{(v|w)^2}{(w|w)} + \frac{(v|w)^2}{(w|w)} \]
\[= (v|v) - 2 \cdot \frac{(v|w)^2}{(w|w)} + \frac{(v|w)^2}{(w|w)} \]
\[= (v|v) - 2 \cdot \frac{(v|w)^2}{(w|w)} + \frac{(v|w)^2}{(w|w)} \]

Wobei \((w|w) > 0\) ist.

\[0 \leq (v|v) \cdot (w|w) - 2 \cdot (v|w)^2 + (v|w)^2 \]
\[= (v|v) \cdot (w|w) - (v|w)^2 \]

⇒ Cauchy-Schwarz’sche Ungleichung

Gleichheit \(\Rightarrow 0 = (v - a \cdot w|v - a \cdot w) \Rightarrow v - a \cdot w = o\) Also \(v, w\) linear abhängig.

\(v, w\) linear abhängig \(\Rightarrow v = b \cdot w\) für ein \(b \in \mathbb{R}\).

\[(v|w)^2 = b^2 \cdot (w|w)^2\]

\[(v|v) \cdot (w|w) = \frac{(b \cdot w|b \cdot w) \cdot (w|w)}{b^2 \cdot (w|w)^2} \]

⇒ Gleichheit

6.5. Definition

\(V\) Euklidischer Vektorraum.

a) Für \(v \in V\) ist die (Euklidische-)Norm definiert durch

\[||v|| := +\sqrt{(v|v)} \]
\[\geq 0 \]

(„Länge von \(v\)“)

b) Für \(v, w \in V\) ist der (Euklidische-)Abstand definiert durch

\[d(v, w) := ||v - w|| \]
\[= +\sqrt{(v - w|v - w)} \]
6.6. Beispiele

a) \mathbb{R}^n Standard-Skalarprodukt.

\[
x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}
\]

\[
y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}
\]

\[
\|x\| = \sqrt{\sum_{i=1}^{n} x_i^2}
\]

\[
d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}
\]

\[
\|e_i\| = 1
\]

$n = 1 : x \in \mathbb{R}$:

\[
\|x\| = +\sqrt{(x|x)}
\]

\[
= +\sqrt{\sum_{i=1}^{n} x \cdot x}
\]

\[
= +\sqrt{x^2}
\]

\[
= |x|
\]

b) $V = C[a, b]$.

\[
(f|g) = \int_{a}^{b} f(t) \cdot g(t) \, dt
\]

\[
\|f\| = +\sqrt{\int_{a}^{b} f(t)^2 \, dt}
\]
6.7. Satz

V Euklidischer Vektorraum mit Euklidischer Norm $\|\cdot\|$. Dann gilt für alle $v, w \in V, a \in \mathbb{R}$:

a)

$$\|v\| \geq 0 \quad \text{(Definitheit)}$$

Gleichheit: $\|v\| = 0 \iff v = o$

b)

$$\|a \cdot v\| = |a| \cdot \|v\| \quad \text{(absolute Homogenität)}$$

c)

$$\|v + w\| \leq \|v\| + \|w\| \quad \text{(Dreiecksungleichung)}$$

d)

$$\|\|v\| - \|w\|\| \leq \|v - w\| \leq \|v\| + \|w\|$$

Beweis:

a) Klar.

b)

$$\|a \cdot v\| = +\sqrt{(a \cdot v) a \cdot v}$$

$$= +\sqrt{a \cdot (a \cdot v)} \quad \text{(3)}$$

$$= +\sqrt{a^2 \cdot (v|v)} \quad \text{(3)}$$

$$= (+\sqrt{a^2}) \cdot (+\sqrt{(v|v)})$$

$$= |a| \cdot (+\sqrt{(v|v)})$$

$$= |a| \cdot \|(v|v)\|$$
c)

\[
\|v + w\|^2 = (v + w|v + w) \\
= (v|v) + 2 \cdot (v|w) + (w|w) \\
\leq 6.4 \cdot (v|v) + (w|w) + 2 \cdot \sqrt{(v|v) \cdot (w|w)} \\
= \|v\|^2 + \|w\|^2 + 2 \cdot \|v\| \cdot \|w\| \\
= (\|v\| + \|w\|)^2
\]

\[\]

6.8. Satz

V Euklidischer Vektorraum, \(v, w \in V\).

a)

\[
\|v + w\|^2 = \|v\|^2 + \|w\|^2 + 2 \cdot (v|w)
\]

b) (Parallelogrammgleichung)

\[
\|v + w\|^2 + \|v - w\|^2 = 2 \cdot (\|v\|^2 + \|w\|^2)
\]

Beweis:

a)

\[
\|v + w\|^2 = (v + w|v + w) \\
= (v|v) + 2 \cdot (v|w) + (w|w) \\
= \|v\| + \|w\| + 2 \cdot (v|w)
\]

b) Folgt aus a).

6.9. Definition

V Euklidischer Vektorraum.

Mitschrieb von Rouven Walter 73
a) \(v, w \in V, v \neq o \neq w\), so ist der Winkel zwischen \(v\) und \(w\) definiert durch

\[
\varphi = \arccos \left(\frac{(v|w)}{\|v\| \cdot \|w\|} \right) \in [0, \pi]
\]

(kein orientierter Winkel)

b) \(v, w\) orthogonal (senkrecht), falls \((v|w) = 0\) (d.h. \(\varphi = \frac{\pi}{2}\), falls \(v \neq o \neq w\)).

(o orthogonal zu allen Vektoren)

c) \(M \subseteq V\), so \(M^\perp = \{w \in V : (v|w) = 0 \forall v \in M\}\) Orthogonalraum zu \(M\).

\(M^\perp\) ist stets Unterraum von \(V\) (selbst, wenn \(M\) kein Unterraum ist).

\(\{o\}^\perp = V, V^\perp = \{o\}\).

6.10. Bemerkung

\(v, w\) orthogonal, so

\[
\|v + w\|^2 = \|v\|^2 + \|w\|^2 \quad \text{(Pythagoras)}
\]

Beweis:

(6.8a)

6.11. Beispiele

a) \(\mathbb{R}^n, (e_i|e_j) = 0\) für \(i \neq j\), paarweise orthogonal.

b) \(\mathbb{R}^3\) Standard-Skalarprodukt, \(x = (-1, 2, 1)^t, y = (2, 2, 4)^t\).

 Winkel zwischen \(x\) und \(y\)?

\[
\frac{(x|y)}{\|x\| \cdot \|y\|} = \frac{6}{\sqrt{6} \cdot \sqrt{24}} = \frac{1}{2}
\]

\(\varphi \in [0, \pi]\) mit \(\cos(\varphi) = \frac{1}{2} \Rightarrow \varphi = \frac{\pi}{3}\).

c) \(x = (x_1, x_2)^t \in \mathbb{R}^2, x \neq o\)

\[
\{x\}^\perp = \{r \cdot (x_2, -x_1)^t : r \in \mathbb{R}\}
\]

Mitschrieb von Rouven Walter
d) $C[0, 2\pi]$

$$(f | g) = \int_0^{2\pi} f(x) \cdot g(x) \, dx$$

4.5 (Orthogonalitätsrelation):

$m \neq n$:

$$(\cos(m \cdot x) | \cos(n \cdot x)) = \int_0^{2\pi} \cos(m \cdot x) \cdot \cos(n \cdot x) \, dx$$

$$= 0$$

$\cos(m \cdot x), \cos(n \cdot x)$ sind orthogonal.

Entsprechend für \sin:

$m, n: \cos(m \cdot x) \cdot \sin(n \cdot x)$ orthogonal

6.12. Definition

V Euklidischer Vektorraum, Skalarprodukt $(.,.)$, $M \subseteq V$.

a) M heißt Orthonormalsystem, falls $\|v\| = 1$ für alle $v \in M$ und $(v|w) = 0$ für alle $v, w \in M$, $v \neq w$.

Bemerkung2:

Sei $v \in V$, $v \neq o$ und $w = \frac{1}{\|v\|} \cdot v$, so $\|w\| = 1$

b) M heißt Orthonormalbasis von V, falls M Orthonormalsystem und Basis von V.

6.13. Satz

a) Ein Orthonormalsystem ist linearanabhängig.

b) Ist $M = \{v_1, \ldots, v_n\}$ ein Orthonormalsystem. $v \in V$, so ist

$$v - \sum_{i=1}^{m} (v|v_i) \cdot v_i \in M^\perp$$

2Im Anhang A befindet sich dazu ein von mir geführter Beweis.
Beweis:

a) \(M = \{v_1, \ldots, v_n\} \) Orthonormalsystem. Sei \(\sum_{i=1}^{m} c_i \cdot v_i = o \). Zu Zeigen: alle \(c_i = 0 \).

Sei \(j \in \{1, \ldots, m\} \).

\[
0 = (v_j| \sum_{i=1}^{m} c_i \cdot v_i)
= \sum_{i=1}^{m} c_i \cdot (v_j|v_i)
= c_j \cdot (v_j|v_j)
= c_j
\]

b) \(v_j \in M \).

\[
(v_j|v - \sum_{i=1}^{m} (v|v_i) \cdot v_i)
= (v_j|v) - \sum_{i=1}^{m} (v|v_i) \cdot (v_j|v_i)
= (v_j|v) - (v|v_j) \cdot (v_j|v_j)
= 0
\]

6.14. Theorem (Gram-Schmidt’sches Orthonormalisierungsverfahren)

Sei \(M = \{w_1, \ldots, w_m\} \) eine linear unabhängige Teilmenge des Euklidischen Vektorraums \(V \). Dann gibt es ein Orthonormalsystem \(\{v_1, \ldots, v_m\} \) mit \((v_1, \ldots, v_i)_\mathbb{R} = (w_1, \ldots, w_i)_\mathbb{R} \), \(i = 1, \ldots, m \).

Insbesondere existiert Orthonormalbasis in \(V \).

Beweis:

\(w_1 \neq o \). Setze \(v_1 = \frac{1}{\|w_1\|} \cdot w_1 \). Dann \(\|v_1\| = 1 \), \((v_1)_\mathbb{R} = (w_1)_\mathbb{R} \).

Sei schon Orthonormalsystem \(\{v_1, \ldots, v_i\} \) \((i < m) \) bestimmt mit \((v_1, \ldots, v_j) = (w_1, \ldots, w_j) \), \(j = 1, \ldots, i \).

Setze:

\[
v_j' = w_{i+1} - \sum_{j=1}^{i} (v_j|w_{i+1}) \cdot v_j
\]
Nach 6.13b) gilt:

\[(v'_{i+1}|v_j) = 0 \quad \text{für} \ j = 1, \ldots, i\]

Da \(w_{i+1} \notin \langle w_1, \ldots, w_i \rangle = \langle v_1, \ldots, v_i \rangle_{\mathbb{R}}\), ist \(v'_{i+1} \neq o\).

Setze:

\[v_{i+1} = \frac{1}{\|v'_{i+1}\|} \cdot v'_{i+1}\]

\[\|v_{i+1}\| = 1, \ (v_{i+1}|v_j) = 0, \ j = 1, \ldots, j.\]

\[\langle v_1, \ldots, v_i, v_{i+1} \rangle_{\mathbb{R}} = \langle v_1, \ldots, v_i, v'_{i+1} \rangle_{\mathbb{R}} = \langle v_1, \ldots, v_i, w_{i+1} \rangle_{\mathbb{R}} = \langle w_1, \ldots, w_i, w_{i+1} \rangle_{\mathbb{R}}\]

6.15. Beispiele

a) \(e_1, \ldots, e_n\) kanonische Basis von \(\mathbb{R}^n\): Orthonormalbasis (ONB) von \(\mathbb{R}^n\) bzgl. Standard Skalarprodukt.

b) \(\mathbb{R}^3\) mit Standard Skalarprodukt.

\(w_1 = (1, 1, 1)^t, \ w_2 = (1, 1, 2)^t, \ w_3 = (1, 0, 0)^t\) linear unabhängige Basis.

Bestimmung Orthonormalbasis \(v_1, v_2, v_3\) mit \(\langle v_1 \rangle = \langle w_1 \rangle, \langle v_1, v_2 \rangle = \langle w_1, w_2 \rangle, \langle v_1, v_2, v_3 \rangle = \mathbb{R}^3\).

\(\|w_1\| = \sqrt{3}, \ \text{also}\)

\[v_1 = \frac{1}{\sqrt{3}} \cdot w_1 = \frac{1}{\sqrt{3}} \cdot (1, 1, 1)^t = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^t\]

\[(v_1|w_2) = \frac{4}{\sqrt{3}},\]

\[v'_2 = w_2 - (v_1|w_2) \cdot v_1 = (1, 1, 2)^t - \frac{4}{3} \cdot (1, 1, 1)^t = \left(-\frac{1}{3}, -\frac{1}{3}, \frac{2}{3}\right)^t = \frac{1}{3} \cdot (-1, -1, 2)^t\]
\[\|v'_2\| = \frac{\sqrt{6}}{3} \]

\[v_2 = \frac{1}{\sqrt{6}} \cdot (-1, -1, 2)^t \]

\[v'_3 = (1, 0, 0)^t - \frac{1}{3}((1, 1, 1)(1, 0, 0)) \cdot (1, 1, 1)^t \]
\[-\frac{1}{6}((-1, -1, 2)(1, 0, 0)) \cdot (-1, -1, 2)^t \]
\[= (1, 0, 0)^t - \frac{1}{3}(1, 1, 1)^t - \frac{1}{6}(-1, -1, 2)^t \]
\[= \left(\frac{1}{2}, -\frac{1}{2}, 0\right)^t \]

\[\|v'_3\| = \frac{\sqrt{2}}{2} \]

\[v_3 = \frac{1}{\sqrt{2}} \cdot (1, -1, 0)^t \]

Damit ist \(v_1, v_2, v_3 \) Orthonormalbasis von \(\mathbb{R}^3 \).

6.16. Bemerkung

\(V \) Euklidischer Vektorraum, endlich dimensional, (\(.| . \)) Skalarprodukt.
\(v_1, \ldots, v_n \) Orthonormalbasis bzgl (\(.| . \)), \(v, w \in V \) mit \(v = \sum_{i=1}^{n} a_i \cdot v_i, w = \sum_{i=1}^{n} b_i \cdot v_i \).

\[(v|w) = \left(\sum_{i=1}^{n} a_i \cdot v_i \right) \left(\sum_{j=1}^{n} b_j \cdot v_j \right) \]
\[= \sum_{i,j=1}^{n} a_i \cdot b_j \cdot (v_i|v_j) \]
\[= \sum_{i=1}^{n} a_i \cdot b_i \]

Bzgl. geeigneter Basis ist jedes Skalarprodukt von Form aus 6.3b).
6.17. Satz

V endlich dimensionaler Euklidischer Vektorraum, U Unterraum von V, dann

a)
$$V = U \oplus U^\perp$$

Insbesondere: $\dim(V) = \dim(U) + \dim(U^\perp)$

b)
$$\left(U^\perp\right)^\perp = U$$

Beweis:

a) Sei w_1, \ldots, w_m Basis von U.

 Ergänze zur Basis $w_1, \ldots, w_m, w_{m+1}, \ldots, w_n$ von V.

 Wende Gram-Schmidt auf w_1, \ldots, w_n an.

 Liefert Orthonormalbasis v_1, \ldots, v_n mit
 $$\langle v_1, \ldots, v_m \rangle_\mathbb{R} = \langle w_1, \ldots, w_m \rangle_\mathbb{R} = U$$
 $$\langle w_{m+1}, \ldots, w_n \rangle_\mathbb{R} \subseteq U^\perp$$

 $$V = \langle w_1, \ldots, w_m \rangle_\mathbb{R} \oplus \langle w_{m+1}, \ldots, w_n \rangle_\mathbb{R}$$
 $$\subseteq U + U^\perp$$

 $$V = U + U^\perp$$

Sei $u \in U \cap U^\perp$.

$$\langle u | u \rangle = 0 \quad \Rightarrow \quad u = o.$$

$V = U \oplus U^\perp$. ($U^\perp = \langle w_{m+1}, \ldots, w_n \rangle_\mathbb{R}$).

b) $U \subseteq \left(U^\perp\right)^\perp$.

$$\dim \left(U^\perp \right)^\perp = \dim(V) - \dim(U^\perp)$$

$$= \dim(V) - \dim(V) + \dim(U)$$

$$= \dim(U)$$
5.23b): \(U = (U^\perp)^\perp \).

6.18. Definition

Seien \(x, y \in \mathbb{R}^3 \) mit
\[
 x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.
\]

Das **Vektorprodukt** ist wie folgt definiert:
\[
 x \times y := \begin{pmatrix} x_2y_3 - x_3y_2 \\ x_3y_1 - x_1y_3 \\ x_1y_2 - x_2y_1 \end{pmatrix} \in \mathbb{R}^3
\]

6.19. Satz

Seien \(x, y, z \in \mathbb{R}^3 \) und \(a \in \mathbb{R} \).

a) \((x \times y)|x| = (x \times y)|y| = 0 \)

b) \(x \times y = -y \times x \)

c) \(x \times (y + z) = (x \times y) + (x \times z) \)
\[
 x \times (a \cdot y) = a \cdot (x \times y)
\]

Analog in der 1. Komponente.

d) \(x \times y = o \iff x, y \) linear abhängig

e) Seien \(x, y \neq o, \varphi = \text{Winkel zwischen } x \text{ und } y. \)
\[
 ||x \times y|| = ||x|| \cdot ||y|| \cdot \sin(\varphi)
\]

Flächeninhalt des von \(x \) und \(y \) aufgespannten Parallelogramms

Beweis:
a), b), c) nachrechnen\(^3\).

e) \[
 ||x \times y||^2 = (x_2y_3 - x_3y_2)^2 + (x_3y_1 - x_1y_3)^2 + (x_1y_2 - x_2y_1)^2 \\
 = (x_1^2 + x_2^2 + x_3^2)(y_1^2 + y_2^2 + y_3^2) - (x_1y_1 + x_2y_2 + x_3y_3)^2 \\
 = ||x||^2 \cdot ||y||^2 - (x|y|^2 \\
 = ||x||^2 \cdot ||y||^2 - ||x||^2 \cdot ||y||^2 \cdot \cos^2(\varphi) \\
 = ||x||^2 \cdot ||y||^2 \cdot \sin^2(\varphi) \quad 0 \leq \varphi \leq \pi, \quad \sin(\varphi) \geq 0
\]

\(^3\)Im Anhang A befindet sich dazu ein von mir geführter Beweis.
6.20. Bemerkung

$x, y, x \times y$ bilden Rechtssystem.

6.21. Beispiel

$x = (1, 2, 0)^t, \ y = (1, 1, 1)^t$.

Bestimme $(x, y)^\perp$ 1-dimensional (6.17)

6.19 a): $x \times y = (2, -1, -1)^t, (x, y)^\perp = \langle (2, -1, -1) \rangle$.

6.22. Bemerkung

\mathbb{C}^n Standard Skalarprodukt, $x = (x_1, \ldots, x_n)^t, y = (y_1, \ldots, y_n)^t \in \mathbb{C}^n$.

$\langle x | y \rangle = \sum_{i=1}^{n} x_i y_i \in \mathbb{C}$

(1) $\langle x | x \rangle \in \mathbb{R}$,
 Ist $x \neq 0$, so $\langle x | x \rangle \geq 0$.

(2) $\langle x | y \rangle = \overline{\langle y | x \rangle}$

(3) Linearität im 2. Argument:
 $\langle x | y + z \rangle = \langle x | y \rangle + \langle x | z \rangle$
 $\langle x | a \cdot y \rangle = a \cdot \langle x | y \rangle$

 Linearität im 1. Argument: $\langle w + x | y \rangle = \langle w | y \rangle + \langle x | y \rangle$,
 Antilinearität im 1. Argument: $\langle ax | y \rangle = \overline{a} \langle x | y \rangle$

Norm, Abstand definierbar.

\mathbb{C}-Vektorraum, $(.|.) : V \rightarrow \mathbb{C}$,
(1)-(3) unitärer Vektorraum.

Cauchy-Schwarz’sche Ungleichung:

$|\langle x | y \rangle|^2 \leq \langle x | x \rangle(\langle y | y \rangle)$

Gram-Schmidt funktioniert.
7. Lineare Abbildungen

K beliebiger Körper.

7.1. Definition

V, W K-Vektorräume.

a) $\alpha : V \rightarrow W$ heißt lineare Abbildung, falls gilt:

\begin{align*}
\alpha(v + w) &= \alpha(v) + \alpha(w) \quad \forall v, w \in V \quad \text{(Additivität)} \\
\alpha(k \cdot v) &= k \cdot \alpha(v) \quad \forall v \in V, k \in K \quad \text{(Homogenität)}
\end{align*}

b) Ist die lineare Abbildung $\alpha : V \rightarrow W$ bijektiv, so heißt α ein Isomorphismus; V und W heißen isomorph, $V \cong W$.

7.2. Bemerkung

$\alpha : V \rightarrow W$ lineare Abbildung.

a)

$$\alpha(o) = o$$

b)

$$\alpha \left(\sum_{i=1}^{m} a_i \cdot v_i \right) = \sum_{i=1}^{m} a_i \cdot \alpha(v_i) \quad \forall v_i \in V, a_i \in K$$
Beweis:

a)\[
\alpha(o) = \alpha(o + o) \\
= \alpha(o) + \alpha(o)
\]

Beide Seiten subtrahieren mit \(\alpha(o)\) ergibt \(o = \alpha(o)\).

b) Folgt aus 7.1

7.3. Beispiele

a) Nullabbildung: \(V \to W\) mit \(\alpha(v) = o\) für alle \(v \in V\).

b) \(a \in K\), definiere: \(\alpha : V \to V\) durch \(\alpha(v) = a \cdot v\).
\[
\begin{align*}
\alpha(v + w) &= a \cdot (v + w) \\
&= a \cdot v + a \cdot w \\
&= \alpha(v) + \alpha(w)
\end{align*}
\]

\[
\begin{align*}
\alpha(k \cdot v) &= a \cdot (k \cdot v) \\
&= a \cdot (v \cdot k) \\
&= (a \cdot v) \cdot k \\
&= k \cdot (a \cdot v) \\
&= k \cdot \alpha(v)
\end{align*}
\]

c) \(V = \mathbb{R}^2\),
\(d : \mathbb{R}^2 \to \mathbb{R}^2\), Drehung um \(o\) mit Winkel \(\varphi\).

d)\[
\sigma : \begin{cases}
\mathbb{R}^3 \to \mathbb{R}^3 \\
(x_1, x_2, x_3)^t \mapsto (x_1, x_2, -x_3)^t
\end{cases}
\]
Spiegelung an der \(x_1\)-\(x_2\)-Ebene, lineare Abbildung:
\[
\begin{align*}
\sigma((x_1, x_2, x_3)^t + (y_1, y_2, -y_3)^t) &= \sigma((x_1 + y_1, x_2 + y_2, x_3 + y_3)^t) \\
&= (x_1 + y_1, x_2 + y_2, -x_3 - y_3)^t \\
&= (x_1, x_2, -x_3)^t + (y_1, y_2, -y_3)^t \\
&= \sigma((x_1, x_2, x_3)^t) + \sigma((y_1, y_2, y_3)^t)
\end{align*}
\]
e) $V = U \oplus W$, $v \in V$ lässt sich eindeutig darstellen $v = u + w$, $u \in U$, $w \in W$.

$\pi_{U,W} : V \to U$ mit $\pi_{U,W}(u + w) = u$.

Projektion von V auf U entlang W.

Beispiel:
$V = \mathbb{R}^2$, $U = \langle e_1 \rangle$, $W = \langle e_2 \rangle$, $(x_1, x_2)^t \mapsto x_1 \cdot e_1 = (x_1, 0)^t$, lineare Abbildung

f) $V = K^n$, wählte $c_1, \ldots, c_n \in K$,

$\alpha : \begin{cases} V \to W \\ (x_1, \ldots, x_n)^t \mapsto (x_2, \ldots, x_n, c_1 \cdot x_1 + \ldots + c_n \cdot x_n)^t \end{cases}$

ist lineare Abbildung.

Beschreibt lineares Schieberegister.

g) $a, b, c, d \in K$.

$\tau : \begin{cases} K^2 \to K^2 \\ x_1 \mapsto a \cdot x_1 + b \cdot x_2 \\ x_2 \mapsto c \cdot x_1 + d \cdot x_2 \end{cases}$

ist lineare Abbildung.

(Später: Jede lineare Abbildung $K^2 \to K^2$ ist von dieser Form)

h)

$\alpha : \begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ x_1 \mapsto x_1^2 \end{cases}$

ist keine lineare Abbildung, da:

$\alpha \left(\begin{array}{c} 1 \\ 0 \end{array} \right) + \alpha \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = 4$

Denn im Allgemeinen gilt nicht:

$(x_1 + y_1)^2 = x_1^2 + y_1^2$
i) \(V = \text{Vektorraum der differenzierbaren Funktionen } \mathbb{R} \to \mathbb{R}. \)

\[
\alpha : \begin{cases}
V \to \mathbb{R}^\mathbb{R} = \text{Vektorraum aller Abbildungen } \mathbb{R} \to \mathbb{R} \\
\quad f \mapsto f'
\end{cases}
\]

lineare Abbildung.

\[
(f + g)' = f' + g' \\
(k \cdot f)' = k \cdot f'
\]

7.4. Satz

Sei \(\alpha : V \to W \) lineare Abbildung.

Ist \(U \) ein Unterraum von \(V \), so ist \(\alpha(U) = \{ \alpha(u) : u \in U \} \) ein Unterraum von \(W \).

Insbesondere ist \(\alpha(V) \) ein Unterraum von \(W \).

Ist \(U \) endlich dimensional, so ist \(\dim(\alpha(U)) \leq \dim(U) \).

\[\text{Beweis:}\]

\(u_1, u_2 \in U: \)

\[\alpha(u_1) + \alpha(u_2) = \alpha \left(u_1 + u_2 \right) \left\|_{\in \mathbb{R}^\mathbb{R}} \right. \in \alpha(U)\]

\(k \in K: \)

\[k \cdot \alpha(u) = \alpha \left(k \cdot u \right) \left\|_{\in \mathbb{R}^\mathbb{R}} \right. \in \alpha(U)\]

Sei \(u_1, \ldots, u_k \) Basis von \(U \) (d.h. \(\dim(U) = k \)), \(u \in U \) mit

\[u = \sum_{i=1}^{k} c_i \cdot u_i\]

\[\alpha(u) = \alpha \left(\sum_{i=1}^{k} c_i \cdot u_i \right) = \sum_{i=1}^{k} \alpha(c_i \cdot u_i) \]

\(\alpha(U) = \langle \alpha(u_1), \ldots, \alpha(u_n) \rangle \) und \(\alpha(u_1), \ldots, \alpha(u_k) \) Erzeugensystem von \(\alpha(U) \), enthält eine Basis. \(\dim(\alpha(U)) \leq k = \dim(U) \).
7.5. Satz

Sei $\alpha : V \to W$ lineare Abbildung.

a) $\ker(\alpha) = \{v \in V : \alpha(v) = 0\}$ Kern von α ist Unterraum von V.

b) α injektiv \iff $\ker(\alpha) = \{0\}$

c) Ist α bijektiv, so ist $\alpha^{-1} : W \to V$ (bijektiv) lineare Abbildung.

Beweis1:

Beweis wie bei Homomorphismen von Gruppen oder Ringen.

7.6. Beispiele

a) Sei

\[
\alpha : \begin{pmatrix} \mathbb{R}^3 \to \mathbb{R}^3 \\
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \\ 2 \cdot x_1 \\ x_1 + x_2 + 2 \cdot x_3 \end{pmatrix} \end{pmatrix}
\]

lineare Abbildung.

\[
U = \langle e_2, e_3 \rangle
\]

\[
= \left\{ \begin{pmatrix} 0 \\ x_2 \\ x_3 \end{pmatrix} : x_2, x_3 \in \mathbb{R} \right\}
\]

\[
\alpha(U) = \langle \alpha(e_2), \alpha(e_3) \rangle_{\mathbb{R}}
\]

\[
= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}_{\mathbb{R}}
\]

b) $V = U \oplus W$, $\pi_{U,W}$ Projektion auf U entlang W.

$\pi_{U,W}(u + w) = u$, $\ker(\pi_{U,W}) = W$

1Im Anhang A befindet sich dazu ein von mir geführter Beweis.
7.7. Satz

V, W K-Vektorraum, \(\dim(V) = n \), \(\{v_1, \ldots, v_n\} \) Basis von V, \(w_1, \ldots, w_n \) (nicht notwendig verschiedene) Vektoren in W.

Dann gibt es genau eine lineare Abbildung \(\alpha : V \rightarrow W \) mit \(\alpha(v_i) = w_i, \ i = 1, \ldots, n. \)

Beweis:

Gesucht: \(\alpha : V \rightarrow W \) linear mit \(\alpha(v_i) = w_i. \)

\(v \in V, \ v = \sum_{i=1}^{n} c_i \cdot v_i, \ c_i \in K \) eindeutig bestimmt.

\[
\alpha(v) := \sum_{i=1}^{n} c_i \cdot w_i \in W
\]

Sei \(v' = \sum_{i=1}^{n} c'_i \cdot v_i: \)

\[
\alpha(v + v') = \alpha \left(\sum_{i=1}^{n} c_i \cdot v_i + \sum_{i=1}^{n} c'_i \cdot v_i \right) = \alpha \left(\sum_{i=1}^{n} (c_i + c'_i) \cdot v_i \right) = \sum_{i=1}^{n} (c_i + c'_i) \cdot w_i = \sum_{i=1}^{n} c_i \cdot w_i + \sum_{i=1}^{n} c'_i \cdot w_i = \alpha(v) + \alpha(v')
\]

Genau so: \(\alpha(k \cdot v) = k \cdot \alpha(v). \)

Es gilt: \(\alpha(v_i) = w_i, \ i = 1, \ldots, n. \)

Ist \(\beta \) eine weitere lineare Abbildung \(V \rightarrow W \) mit \(\beta(v_i) = w_i, \ i = 1, \ldots, n, \) dann

\[
\beta(v) = \beta \left(\sum_{i=1}^{n} c_i \cdot v_i \right) = \sum_{i=1}^{n} c_i \cdot \beta(v_i) = \sum_{i=1}^{n} c_i \cdot w_i = \alpha(v)
\]
7.8. Beispiel

\(V = \mathbb{R}^2, \, \alpha : V \to V, \) Drehung um \(o \) mit \(\varphi \).

\[
\begin{align*}
e_1 & \mapsto \cos(\varphi) \cdot e_1 + \sin(\varphi) \cdot e_2 \\
e_2 & \mapsto -\sin(\varphi) \cdot e_1 + \cos(\varphi) \cdot e_2
\end{align*}
\]

\[
\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \end{pmatrix} = \alpha(e_1) \\
\begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} -\sin(\varphi) \\ \cos(\varphi) \end{pmatrix} = \alpha(e_2)
\]

\[
x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1 \cdot e_1 + x_2 \cdot e_2
\]

\[
\alpha(x) = x_1 \cdot \alpha(e_1) + x_2 \cdot \alpha(e_2) = \begin{pmatrix} x_1 \cdot \cos(\varphi) - x_2 \cdot \sin(\varphi) \\ x_1 \cdot \sin(\varphi) + x_2 \cdot \cos(\varphi) \end{pmatrix}
\]

7.9. Satz

Sei \(\alpha : V \to W \) lineare Abbildung, \(\dim(V) = n, \, \{v_1, \ldots, v_n\} \) Basis von \(V \).

a) \(\alpha \) ist injektiv \(\iff \) \(\alpha(v_1), \ldots, \alpha(v_n) \) sind linear unabhängig

b) \(\alpha \) ist surjektiv \(\iff \) \(\langle \alpha(v_1), \ldots, \alpha(v_n) \rangle_K = W \)

c) \(\alpha \) ist bijektiv \(\iff \) \(\alpha(v_1), \ldots, \alpha(v_n) \) Basis von \(W \)

Beweis:

a) \(\Rightarrow \):

\[
\alpha = \sum_{i=1}^n c_i \cdot \alpha(v_i)
\]

\[
= \alpha \left(\sum_{i=1}^n c_i \cdot v_i \right)
\]
Daraus folgt \(\sum_{i=1}^{n} c_i \cdot v_i \in \ker(\alpha) = \{0\} \).

\(\sum_{i=1}^{n} c_i \cdot v_i = 0 \Rightarrow c_1 = \ldots = c_n = 0. \)

\(\alpha(v_1), \ldots, \alpha(v_n) \) linear unabhängig.

\(\Leftarrow: \)

\[v = \sum_{i=1}^{n} c_i \cdot v_i \in \ker(\alpha) \]

\[o = \alpha(v) = \sum_{i=1}^{n} c_i \cdot \alpha(v_i) \]

Da \(\alpha(v_1), \ldots, \alpha(v_n) \) linear unabhängig, folgt daraus:

\(c_1 = \ldots = c_n = 0 \Rightarrow v = o. \)

\[\ker(\alpha) = \{o\} \Rightarrow \alpha \text{ injektiv.} \]

b) Klar.

c) Folgt aus a) b).

\textbf{7.10. Korollar}

\(V, W \ K\)-Vektorraum mit \(\dim(V) = \dim(W) = n. \)

Dann \(V \cong W. \)

\textbf{Beweis:}

\(v_1, \ldots, v_n \) Basis von \(V, \) \(w_1, \ldots, w_n \) Basis von \(W. \)

Nach 7.7: Es existiert genau eine Abbildung \(\alpha: V \to W, \alpha(v_i) = w_i. \)

Nach 7.9c): \(\alpha \) ist bijektiv.

\textbf{7.11. Korollar}

\(V \ n\)-dimensionaler Vektorraum, \(B = \{v_1, \ldots, v_n\} \) Basis von \(V. \)

Dann ist die Abbildung

\(K_B : \begin{cases} V \to K^n \\ v = \sum_{i=1}^{n} c_i \cdot v_i \mapsto \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} \in K^n \end{cases} \)
ein Vektorraumisomorphismus.
Also: V n-dimensional K-Vektorraum, so ist $V \cong K^n$.

Beweis:

K_B ist lineare Abbildung. $K_B(v_i) = e_i$.

7.12. Satz

a) $\alpha, \beta : V \rightarrow W$ linear, so auch $\alpha + \beta$ und $k \cdot \alpha$ ($k \in K$).

b) $\alpha : V \rightarrow W$, $\gamma : W \rightarrow U$ linear, so auch $\gamma \circ \alpha : V \rightarrow U$.

d) $L(V, V)$ ist Ring mit Eins ($= \text{id}_V$) bzgl. +, \circ; nicht-kommutativ, falls $\dim(V) > 1$.

(D.h. es existieren $\alpha, \beta \in L(V, V)$: $\alpha \circ \beta \neq \beta \circ \alpha$)

Beweis:

a)

$$(\alpha + \beta)(v_1 + v_2) \stackrel{\text{Def.}}{=} \alpha(v_1 + v_2) + \beta(v_1 + v_2) \stackrel{\text{Linearität}}{=} \alpha(v_1) + \alpha(v_2) + \beta(v_1) + \beta(v_2) = \alpha(v_1) + \beta(v_1) + \alpha(v_2) + \beta(v_2) \stackrel{\text{Def.}}{=} (\alpha + \beta)(v_1) + (\alpha + \beta)(v_2)$$

$$(\alpha + \beta)(k \cdot v_1) \stackrel{\text{Def.}}{=} \alpha(k \cdot v_1) + \beta(k \cdot v_1) \stackrel{\text{Linearität}}{=} k \cdot \alpha(v_1) + k \cdot \beta(v_1) = k \cdot (\alpha(v_1) + \beta(v_1)) \stackrel{\text{Def.}}{=} k \cdot (\alpha + \beta)(v_1)$$

Somit ist $\alpha + \beta$ eine lineare Abbildung.

$k \cdot \alpha$ ebenso².

²Im Anhang A befindet sich dazu ein von mir geführter Beweis.

Mitschrieb von Rouven Walter 90
b)
\[
\gamma \circ \alpha(v_1 + v_2) = \gamma(\alpha(v_1 + v_2)) \\
= \gamma(\alpha(v_1) + \alpha(v_2)) \\
= \gamma(\alpha(v_1)) + \gamma(\alpha(v_2)) \\
= (\gamma \circ \alpha)(v_1) + (\gamma \circ \alpha)(v_2)
\]

\[
\gamma \circ \alpha(k \cdot v_1) = \gamma(\alpha(k \cdot v_1)) \\
= \gamma(k \cdot \alpha(v_1)) \\
= k \cdot \gamma(\alpha(v_1)) \\
= k \cdot (\gamma \circ \alpha)(v_1)
\]

Somit ist \(\gamma \circ \alpha\) eine lineare Abbildung.

c) Folgt aus a).

d) Nachrechnen.

Bemerkung:

Man kann zeigen: (Später)
\(\dim(V) = n, \dim(W) = m, \) so
\[
\dim(L(V, W)) = n \cdot m
\]

7.13. Definition

\(V\) endlich dimensionaler Vektorraum, \(\alpha : V \to W\) linear, so heißt
\[
\dim(\alpha(V)) =: \operatorname{rg}(\alpha) \quad \text{Rang von} \ \alpha
\]

Bemerkung:

\(v_1, \ldots, v_n\) Basis von \(V\), so ist \(\operatorname{rg}(\alpha) = \) Maximalzahl linear unabhängiger Vektoren in \(\{\alpha(v_1), \ldots, \alpha(v_n)\}\).
7.14. Satz

\(U, V, W \) K-Vektorraum, \(U, V \) endlich dimensional, \(\alpha : U \to V, \beta : V \to W \) linear.

a) \(\text{rg} (\beta \alpha) \leq \text{rg} (\beta) \); ist \(\alpha \) surjektiv, so ist \(\text{rg} (\beta \alpha) = \text{rg} (\beta) \)

b) \(\text{rg} (\beta \alpha) \leq \text{rg} (\alpha) \); ist \(\beta \) injektiv, so ist \(\text{rg} (\beta \alpha) = \text{rg} (\alpha) \)

\textbf{Beweis:}

a)

\[
\text{rg}(\beta \alpha) = \dim((\beta \circ \alpha)(U)) \\
\leq \dim((\beta \circ \alpha)(U)) \\
= \dim(\beta(U)) \\
= \text{rg}(\beta)
\]

\(\alpha \) surjektiv: \(\text{rg}(\beta \alpha) \leq \text{rg}(\beta) \); ist \(\alpha \) surjektiv, so ist \(\text{rg}(\beta \alpha) = \text{rg}(\beta) \).

b)

\[
\text{rg}(\beta \alpha) = \dim(\beta(\alpha(U))) \\
\leq \dim(\beta(\alpha(U))) \\
= \text{rg}(\alpha)
\]

\(\beta \) injektiv, so \(\dim(\beta(\alpha(U))) = \dim(\alpha(U)) \).

7.15. Dimensionsformel für lineare Abbildungen

\(V, W \) K-Vektorraum, \(V \) endlich dimensional, \(\alpha : V \to W \) lineare Abbildung.

Dann gilt:

\[
\text{dim}(V) = \text{dim}(\ker(\alpha)) + \text{rg}(\alpha) \\
= \text{dim}(\ker(\alpha)) + \text{dim}(\alpha(V))
\]

\textbf{Beweis:}

Nach 5.25 existiert Unterraum \(U \) von \(V \) mit \(V = \ker(\alpha) \oplus U \). Da \(\ker(\alpha) \cap U = \{0\} \), ist \(\alpha : U \to W \) nach 7.5b) injektiv.
Nach 7.9 a) gilt
\[\dim(U) = \dim(\alpha(U)) \]

\(v \in U: v = w + u, \ w \in \ker(\alpha), \ u \in U. \)
\[\alpha(v) = \alpha(w + u) \]
\[= \alpha(w) + \alpha(u) \]
\[= o + \alpha(u) \]
\[= \alpha(u) \]

Daraus folgt \(\alpha(V) = \alpha(U) \).

Nach 5.33 gilt
\[\dim(V) = \dim(\ker(\alpha)) + \dim(U) \]
\[= \dim(\ker(\alpha)) + \dim(\alpha(U)) \]
\[= \dim(\ker(\alpha)) + \dim(\alpha(V)) \]

7.16. Korollar

\(V, W \) endlich dimensionaler \(K \)-Vektorraum, \(\dim(V) = \dim(W), \ \alpha : V \to W \) linear, dann sind äquivalent:

(1) \(\alpha \) ist injektiv
(2) \(\alpha \) ist surjektiv
(3) \(\alpha \) ist bijektiv

Beweis:

\(\dim(V) = \dim(W) = n. \)
Nach 7.15: \(n = \dim(\ker(\alpha)) + \text{rg}(\alpha). \)
\(\dim(\ker(\alpha)) = 0 \quad \iff \quad \text{rg}(\alpha) = n = \dim(W) \)
\(\ker(\alpha) = \{o\} \quad \iff \quad \alpha(V) = W \)
\(\alpha \) injektiv \quad \iff \quad \alpha \) surjektiv
8. Matrizen und lineare Abbildungen

Alle Vektorräume endlich dimensional.

8.1. Definition

V, W K-Vektorraum.

Wir wählen *geordnete* Basen

\[\mathcal{B} = (v_1, \ldots, v_n) \text{ von } V \]
\[\mathcal{C} = (w_1, \ldots, w_n) \text{ von } W \]

$\alpha : V \to W$ lineare Abbildung.

Nach 7.7: α ist durch die Bilder $\alpha(v_1), \ldots, \alpha(v_n)$ von \mathcal{B} eindeutig bestimmt.

$\alpha(v_1), \ldots, \alpha(v_n)$ lassen sich als Linearkombination bzgl. \mathcal{C} von W beschreiben:

\[\alpha(v_1) = a_{11}w_1 + a_{21}w_2 + \ldots + a_{m1}w_m \]
\[\alpha(v_2) = a_{12}w_1 + a_{22}w_2 + \ldots + a_{m2}w_m \]
\[\vdots \]
\[\alpha(v_n) = a_{1n}w_1 + a_{2n}w_2 + \ldots + a_{mn}w_m \]

Wobei $a_{ij} \in K$. Die a_{ij} (mit $i = 1, \ldots, m$ und $j = 1, \ldots, n$) bestimmen die lineare Abbildung α nach 7.7 eindeutig (bei festgehaltener Basis \mathcal{B} und \mathcal{C}).

Zusammenfassen:

\[
A_{\mathcal{B}, \mathcal{C}} = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\]

k-te Spalte enthält Koordinaten von $\alpha(v_k)$ bzgl. w_1, \ldots, w_m.
8.2. Definition

a) Eine $m \times n$-Matrix A über K ist rechteckiges Schema

\[
A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\]

mit m Zeilen und n Spalten.

Abgekürzt:

\[
A = (a_{ij})_{i=1}^{m} \cdot j=1^{n}
\]

oder

\[
A = (a_{ij})
\]

b) $\mathcal{M}_{m,n}(K)$ ist die Menge aller $m \times n$-Matrizen über K.

$\mathcal{M}_{n}(K)$ ist die Menge aller $n \times n$-Matrizen über K (Gerade Matrizen).

1 \times n-Matrix: Zeilensktor der Länge n.

m \times 1-Matrix: Spaltenktor der Länge m.

Alle $a_{ij} = 0$: Nullmatrix

8.3. Definition

$A_{\alpha}^{\mathcal{B},\mathcal{C}}$ wie in 8.1 heißt Darstellungsmatrix von $\alpha \in L(V, W)$ bzgl. der geordneten Basen \mathcal{B} von V, \mathcal{C} von W.

Abgekürzt: A_{α} (falls \mathcal{B}, \mathcal{C} klar).

$V = W$ und $\mathcal{C} = \mathcal{B}$: $A_{\alpha}^{\mathcal{B}}$ statt $A_{\alpha}^{\mathcal{B},\mathcal{B}}$.

8.4. Beispiele

a) $V = \mathbb{R}^2$, $\mathcal{B} = (e_1, e_2)$ kanonische Basis, α Drehung um o und Winkel φ.

7.8:

\[
\alpha(e_1) = \cos(\varphi) \cdot e_1 + \sin(\varphi) \cdot e_2,
\]

\[
\alpha(e_2) = -\sin(\varphi) \cdot e_1 + \cos(\varphi) \cdot e_2.
\]

\[
A_{\alpha}^{\mathcal{B}} = \begin{pmatrix}
\cos(\varphi) & -\sin(\varphi) \\
\sin(\varphi) & \cos(\varphi)
\end{pmatrix}
\]
b) Nullabbildung hat bzgl. jeder Wahl von \mathcal{B} und \mathcal{C} die Nullmatrix als Darstellungs-
matrix.

c) id_V, $\mathcal{B} = (v_1, \ldots, v_n)$ Basis von V.

$$
A^\mathcal{B}_{\text{id}_V} =
\begin{pmatrix}
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 1
\end{pmatrix}
$$

$=: E_n$

$n \times n$-Einheitsmatrix.

$$
A^\mathcal{B}_{\text{id}_V} = (\delta_{ij})_{i,j=1,\ldots,n}
$$

$\delta_{ij} = \begin{cases}
1 \text{ falls } i = j \\
0 \text{ sonst }
\end{cases}$

(Kronecker-Symbol)

d) id_V, V 2-dimensional, $\mathcal{B} = (v_1, v_2)$, $\mathcal{C} = (v_2, v_1)$.

$$
A^\mathcal{B}_{\text{id}_V} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$

e) $V = \mathbb{R}^2$, $\mathcal{B} = (e_1, e_2)$ kanonische Basis, σ Spiegelung an $\langle e_1 \rangle$,

d.h. $\sigma \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$

$$
A^\mathcal{B}_\sigma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

$\mathcal{B}' = (e_1 + e_2, e_1 - e_2)$

$$
= \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}
$$

$\sigma(e_1 + e_2) = \sigma(e_1) + \sigma(e_2) = e_1 - e_2$

$\sigma(e_1 - e_2) = \sigma(e_1) - \sigma(e_2) = e_1 + e_2$

$$
A^\mathcal{B}_{\sigma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
$$
$A_{\mathcal{B}, \mathcal{B}'} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

durch:

\[
\begin{aligned}
\sigma(e_1) &= e_1 \\
&= a_{11}(e_1 + e_2) + a_{21}(e_1 - e_2) \\
&= (a_{11} + a_{21})e_1 + (a_{11} - a_{21})e_2 \\
a_{11} + a_{21} &= 1 \\
a_{11} - a_{21} &= 0 \\
a_{11} &= a_{21} \\
&= \frac{1}{2}
\end{aligned}
\]

und

\[
\begin{aligned}
\sigma(e_2) &= -e_2 \\
&= a_{12}(e_1 + e_2) + a_{22}(e_1 - e_2) \\
&= (a_{12} + a_{22})e_1 + (a_{12} - a_{22})e_2 \\
a_{12} + a_{22} &= 0 \\
a_{12} - a_{22} &= -1 \\
a_{12} &= -a_{22} \\
a_{12} &= \frac{1}{2} \\
a_{22} &= \frac{1}{2}
\end{aligned}
\]

f) $V = \mathbb{R}^2$, $\mathcal{B} = (e_1, e_2)$, $\mathcal{B}' = (e_1 + e_2, e_1 - e_2)$.

$A_{\mathcal{B}, \mathcal{B}'} = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$

Was ist $\alpha((1,1)^t)$?

\[
\begin{aligned}
\alpha((1,1)^t) &= \alpha(e_1 + e_2) \\
&= \alpha(e_1) + \alpha(e_2) \\
&= 1(e_1 + e_2) + 0(e_1 - e_2) - 1(e_1 + e_2) + 2(e_1 - e_2) \\
&= (2, -2)
\end{aligned}
\]
8.5. Satz

V, W K-Vektorraum, $\dim(V) = n, \dim(W) = m, \alpha \in L(V, W)$. Dann gilt:

$\text{rg}(\alpha) = l \iff$ Es existieren Basen \mathcal{B} und \mathcal{C} in V bzw. W, so dass

$$A^{\mathcal{B},\mathcal{C}}_\alpha = \begin{pmatrix}
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 0
\end{pmatrix}$$

Dass also $a_{ii} = 1$ gilt, für $i = 1, \ldots, l$ und $a_{ij} = 0$ für alle übrigen i, j.

$\mathcal{B} = (v_1, \ldots, v_n)$, $\mathcal{C} = (w_1, \ldots, w_m)$,

$\alpha(v_i) = w_i, i = 1, \ldots, l, \alpha(v_i) = o, i = l + 1, \ldots, n$

Beweis:

\iff: $\alpha(V) = \langle \alpha(v_1), \ldots, \alpha(v_n) \rangle = \langle w_1, \ldots, w_l \rangle$,

$\text{rg}(\alpha) = \dim(\alpha(V)) = l$, da w_1, \ldots, w_l linear unabhängig.

\Rightarrow: Nach 5.25 existiert U: $V = U \oplus \ker(\alpha)$.

$$\dim(U) = \dim(V) - \dim(\ker(\alpha)) = \text{rg}(\alpha)$$

(v_1, \ldots, v_l) Basis von U,

(v_{l+1}, \ldots, v_n) Basis von $\ker(\alpha)$

$\mathcal{B} = (v_1, \ldots, v_l, v_{l+1}, \ldots, v_n)$ Basis von V,

$\alpha|_U$ ist injektiv, denn $\ker(\alpha) \cap U = \{o\}$,

$w_1 = \alpha(v_1), \ldots, w_l = \alpha(v_l)$ linear unabhängig nach 7.9a).

Ergänze w_1, \ldots, w_l zu Basis $(w_1, \ldots, w_l, w_{l+1}, \ldots, w_n) = \mathcal{C}$ von W. Dann hat $A^{\mathcal{B},\mathcal{C}}_\alpha$ die angegebene Form.

8.6. Beispiel

$V = \mathbb{R}^2, \alpha : V \to V$ Drehung um o mit Winkel φ.

$\ker(\alpha) = \{o\}, \mathcal{B} = (e_1, e_2)$,

$$\mathcal{C} = (\cos(\varphi)e_1 + \sin(\varphi)e_2, -\sin(\varphi)e_1 + \cos(\varphi)e_2)$$

$$A^{\mathcal{B},\mathcal{C}}_\alpha = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}$$
8.7. Definition

\(A, B \in M_{m,n}(K), \quad A = (a_{ij}), \quad B = (b_{ij}), \quad k \in K.\)

a)
\[
A + B := (a_{ij} + b_{ij}) = \begin{pmatrix}
 a_{11} + b_{11} & \cdots & a_{1n} + b_{1m} \\
 \vdots & \ddots & \vdots \\
 a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn}
\end{pmatrix}
\]

Summen von Matrizen.

b)
\[
k \cdot A := (k \cdot a_{ij}) = \begin{pmatrix}
 k \cdot a_{11} & \cdots & k \cdot a_{1n} \\
 \vdots & \ddots & \vdots \\
 k \cdot a_{m1} & \cdots & k \cdot a_{mn}
\end{pmatrix}
\]

Skalare Vielfache von Matrizen.

8.8. Satz

\(\alpha, \beta \in L(V, W), \quad \mathcal{B} \text{ Basis von } V, \quad \mathcal{C} \text{ Basis von } W.\)

\[
A^{\mathcal{B},\mathcal{C}}_{\alpha + \beta} = A^{\mathcal{B},\mathcal{C}}_{\alpha} + A^{\mathcal{B},\mathcal{C}}_{\beta}
\]

\[
A^{\mathcal{B},\mathcal{C}}_{k \cdot \alpha} = k \cdot A^{\mathcal{B},\mathcal{C}}_{\alpha}
\]

Beweis:

Nachrechnen\(^1.\)

\(^1\)Im Anhang A befindet sich dazu ein von mir geführter Beweis.

Mitschrieb von Rouven Walter
8.9. Satz

a) \(\mathcal{M}_{m,n}(K) \) ist \(K \)-Vektorraum mit Operation aus 8.7.

Basis \(\{ E_{ij} : i = 1, \ldots, m, \ j = 1, \ldots, n \} \)

\[
E_{ij} = \begin{pmatrix}
0 & \cdots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 1 & 0 \\
0 & \cdots & 0 & 0
\end{pmatrix}
\]

\(\dim(\mathcal{M}_{m,n}(K)) = m \cdot n \).

Nullvektor ist Nullmatrix.

b) \(\dim(V) = n, \dim(W) = m \), so \(L(V,W) \cong \mathcal{M}_{m,n}(K) \).

Isomorphismus: \(L(V,W) \rightarrow \mathcal{M}_{m,n}(K) \) mit \(\alpha \mapsto A^B_{\alpha} \).

(\(B \) Basis von \(V \), \(C \) Basis von \(W \) fest).

\(\dim(L(V,W)) = m \cdot n \).

Bemerkung zur darauf folgenden Definition:

Hinterereinanderausführung von linearen Abbildungen.

Sei \(U \) \(K \)-Vektorraum mit \(\dim(U) = l \) und sei \(B = (u_1, \ldots, u_l) \) eine Basis von \(U \).

Sei \(V \) \(K \)-Vektorraum mit \(\dim(V) = m \) und sei \(C = (v_1, \ldots, v_m) \) eine Basis von \(V \).

Sei \(W \) \(K \)-Vektorraum mit \(\dim(W) = n \) und sei \(D = (w_1, \ldots, w_n) \) eine Basis von \(W \).

\(\alpha : U \rightarrow V, \ \beta : V \rightarrow W \) lineare Abbildung.

Bestimmen: \(A^B_{\beta \circ \alpha} \) aus \(A^C_{\beta} \) und \(A^C_{\alpha} \).

Gesucht: Koeffizienten \(c_{ki} \) mit \((\beta \circ \alpha)(u_i) = \sum_{k=1}^{n} c_{ki} \cdot w_k \) wobei \(i = 1, \ldots, l \).

\[
(\beta \circ \alpha)(u_i) = \beta(\alpha(u_i))
= \beta \left(\sum_{j=1}^{m} a_{ji} \cdot v_j \right)
= \sum_{j=1}^{m} a_{ji} \cdot \beta(v_j)
= \sum_{j=1}^{m} a_{ji} \cdot \sum_{k=1}^{n} b_{kj} \cdot w_k
= \sum_{j=1}^{m} \sum_{k=1}^{n} (a_{ji} \cdot b_{kj} \cdot w_k)
= \sum_{k=1}^{n} \left(\sum_{j=1}^{m} b_{kj} \cdot a_{ji} \right) \cdot w_k
\]
d.h.

\[c_{ki} = \sum_{j=1}^{m} b_{kj} \cdot a_{ji} = b_{k1} \cdot a_{1i} + b_{k2} \cdot a_{2i} + \ldots + b_{km} \cdot a_{mi} \]

mit \(k = 1, \ldots, n \).

8.10. Definition

Sei \(B = \begin{pmatrix} b_{11} & \ldots & b_{1m} \\ \vdots & \ddots & \vdots \\ b_{n1} & \ldots & b_{nm} \end{pmatrix} \in M_{n,m}(K), \ A = \begin{pmatrix} a_{11} & \ldots & a_{1l} \\ \vdots & \ddots & \vdots \\ a_{m1} & \ldots & a_{ml} \end{pmatrix} \in M_{m,l}(K). \)

\[
B \cdot A := \begin{pmatrix} b_{11}a_{11} + b_{12}a_{21} + \ldots + b_{1m}a_{m1} & \ldots & b_{11}a_{1l} + b_{12}a_{2l} + \ldots + b_{1m}a_{ml} \\ \vdots & \ddots & \vdots \\ b_{n1}a_{11} + b_{n2}a_{21} + \ldots + b_{nm}a_{m1} & \ldots & b_{n1}a_{1l} + b_{n2}a_{2l} + \ldots + b_{nm}a_{ml} \end{pmatrix}
\]

\[
= \begin{pmatrix} \sum_{j=1}^{m} b_{1j} \cdot a_{j1} & \ldots & \sum_{j=1}^{m} b_{1j} \cdot a_{jl} \\ \vdots & \ddots & \vdots \\ \sum_{j=1}^{m} b_{nj} \cdot a_{j1} & \ldots & \sum_{j=1}^{m} b_{nj} \cdot a_{jl} \end{pmatrix} = (c_{ki})_{k=1,\ldots,n; \ i=1,\ldots,l} \in M_{n,l}(K)
\]

wobei gilt

\[
c_{ki} = \sum_{j=1}^{m} b_{kj} \cdot a_{ji}
\]

\(B \cdot A \) heißt *Matrixprodukt* von \(A \) und \(B \).

\((B \cdot A := BA)\)

Beachte:

Produkt von \(n \times m\)-Matrix mit \(r \times l\)-Matrix ist *nicht* definiert, falls \(m \neq r \).

8.11. Beispiel

a)

\[
\begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \end{pmatrix}_{2 \times 3} \cdot \begin{pmatrix} 2 & 3 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}_{3 \times 3} = \begin{pmatrix} 5 & 6 & 0 \\ 0 & -1 & 0 \end{pmatrix}_{2 \times 3}
\]
\[
\begin{pmatrix}
2 & 3 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{pmatrix}
\cdot
\begin{pmatrix}
1 & 2 & 3 \\
-1 & 0 & 3
\end{pmatrix}
\text{ nicht definiert!}
\]

b)

\[
\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}
\cdot
\begin{pmatrix}
2 & 3 \\
4 & 5
\end{pmatrix}
= \begin{pmatrix}
10 & 13 \\
22 & 29
\end{pmatrix}
\]

\[
\begin{pmatrix}
2 & 3 \\
4 & 5
\end{pmatrix}
\cdot
\begin{pmatrix}
1 & 2 \\
3 & 4
\end{pmatrix}
= \begin{pmatrix}
11 & 16 \\
22 & 28
\end{pmatrix}
\]

\[
\begin{pmatrix}
11 & 16 \\
22 & 28
\end{pmatrix}
\neq \begin{pmatrix}
10 & 13 \\
22 & 29
\end{pmatrix}
\]

c)

\[
\begin{pmatrix}
1 & 2 & 3
\end{pmatrix}
\cdot
\begin{pmatrix}
2 & 3 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0
\end{pmatrix}
= \begin{pmatrix}
5 & 6 & 0
\end{pmatrix}
\]

d)

\[
\begin{pmatrix}
1 & 2 & 3
\end{pmatrix}
\cdot
\begin{pmatrix}
2 \\
0 \\
1
\end{pmatrix}
= \begin{pmatrix}
5
\end{pmatrix}
\]

Allgemein gilt:

\[
(b_1 \ldots b_m) \cdot \begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_m
\end{pmatrix}
= \sum_{i=1}^{m} a_i \cdot b_i
\]

e) Aus d) folgt:
\(b_k \) \(k \)-ter Zeilenvektor von \(B \), \(B \) \(n \times m \)-Matrix,
\(a_j^T \) \(j \)-ter Spaltenvektor von \(A \), \(A \) \(m \times l \)-Matrix.

\[
B \cdot A = \begin{pmatrix}
\rightarrow b_1 a_1^T & \ldots & \rightarrow b_1 a_l^T \\
\vdots & \ddots & \vdots \\
\rightarrow b_n a_1^T & \ldots & \rightarrow b_n a_l^T
\end{pmatrix}_{n \times l}
\]

f) \[
\begin{pmatrix}
3 \\
4 \\
5
\end{pmatrix}_{3 \times 1} \cdot
\begin{pmatrix}
1 & 2 & -1 & 2
\end{pmatrix}_{1 \times 4} =
\begin{pmatrix}
3 & 6 & -3 & 6 \\
4 & 8 & -4 & 8 \\
5 & 10 & -5 & 10
\end{pmatrix}_{3 \times 4}
\]

g) \(K = \mathbb{Z}_3 \).

\[
\begin{pmatrix}
1 & 2 & 0 \\
2 & 1 & 1
\end{pmatrix}_{2 \times 3} \cdot
\begin{pmatrix}
1 & 2 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{pmatrix}_{3 \times 3} =
\begin{pmatrix}
0 & 1 & 2 \\
1 & 2 & 2
\end{pmatrix}_{2 \times 2}
\]

h) \(A m \times n \)-Matrix.

\[
E_m \cdot A = A \\
A \cdot E_n = A
\]

8.12. Satz

\(U, V, W \) \(K \)-Vektorräume, \(\dim(U) = l \), \(\dim(V) = m \), \(\dim(W) = n \). \(\mathcal{B}, \mathcal{C}, \mathcal{D} \) geordnete Basen von \(U, V, W \). \(\alpha : U \to V \), \(\beta : V \to W \) lineare Abbildungen. Dann:

\[
A_{\mathcal{B} \mathcal{D}}^{\mathcal{B} \mathcal{D}} = A_{\mathcal{C} \mathcal{D}}^{\mathcal{C} \mathcal{D}} \cdot A_{\mathcal{B} \mathcal{C}}^{\mathcal{B} \mathcal{C}}
\]

8.13. Beispiel

\(U = V = W = \mathbb{R}^2 \), \(\mathcal{B} = \mathcal{C} = \mathcal{D} = (e_1, e_2) \) kanonische Basis.

\(\alpha \) Drehung um 0 mit Winkel \(\varphi \),
\[A_{\alpha}^B = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} \]

\[A_{\beta}^B = \begin{pmatrix} \cos(\varphi + \varphi) & -\sin(\varphi + \varphi) \\ \sin(\varphi + \varphi) & \cos(\varphi + \varphi) \end{pmatrix} \]

\[A_{\beta \circ \alpha}^B = A_{\beta}^B \cdot A_{\alpha}^B = 8.12 \left(\begin{array}{cc} \cos(\varphi) \cdot \cos(\varphi) & -\sin(\varphi) \cdot \sin(\varphi) \\ \sin(\varphi) \cdot \cos(\varphi) + \cos(\varphi) \cdot \sin(\varphi) & -\sin(\varphi) \cdot \sin(\varphi) + \cos(\varphi) \cdot \cos(\varphi) \end{array} \right) \]

Additionstheoreme für sin und cos.

8.14. Satz

Falls die Produkte definiert sind, gilt:

\[(B_1 + B_2) \cdot A = B_1 \cdot A + B_2 \cdot A \]
\[B \cdot (A_1 + A_2) = B \cdot A_1 + B \cdot A_2 \]
\[(k \cdot B) \cdot A = B \cdot (k \cdot A) \]
\[(k \cdot (B \cdot A)) = k \cdot (B \cdot A) \]
\[(C \cdot B) \cdot A = C \cdot (B \cdot A) \]

Im Allgemeinen ist \(A \cdot B \neq B \cdot A \) (selbst für quadratische Matrizen, siehe 8.11 b).

Beweis:

Nachrechnen².

8.15. Bemerkung

\(M_n(K) \) Ring mit Eins (= \(E_n \)).

\(M_n(K) \) ist isomorph zu \(L(V, V) \), \(\dim(V) = n \).

Isomorphismus: Wähle Basis \(B \) von \(V : \alpha \in L(V, V) \mapsto A_{\alpha}^B \).

²Im Anhang A befindet sich dazu ein von mir geführter Beweis.
8.16. Definition

$A \in M_n(K)$ (quadratische $n \times n$-Matrix über K).

A heißt \emph{invers}, falls $B \in M_n(K)$ existiert mit

\[
A \cdot B = B \cdot A = E_n
\]

B heißt \emph{Inverses zu A}, Bezeichnung: $B = A^{-1}$.

(Falls A^{-1} existiert, so ist A^{-1} eindeutig bestimmt)

(Aus $A \cdot B = E_n$ folgt $B \cdot A = E_n$ quadratische Matrizen!)

8.17. Korollar

V n-dimensionaler K-Vektorraum, \mathcal{B} Basis von V, $\alpha : V \rightarrow V$ lineare Abbildung.

α invertierbar (d.h. bijektiv) $\iff A^{\mathcal{B}}_{\alpha}$ invertierbar.

Dann:

\[
A^{\mathcal{B}}_{\alpha^{-1}} = (A^{\mathcal{B}}_{\alpha})^{-1}
\]

\[\textbf{Beweis:}\]

\Rightarrow:

\[
A^{\mathcal{B}}_{\alpha} \cdot A^{\mathcal{B}}_{\alpha^{-1}} = A^{\mathcal{B}}_{\alpha \circ \alpha^{-1}} = A^{\mathcal{B}}_{\text{id}(V)} = E_n
\]

\[
A^{\mathcal{B}}_{\alpha^{-1}} = (A^{\mathcal{B}}_{\alpha})^{-1}
\]

\Leftarrow:

\[
A^{\mathcal{B}}_{\alpha} \cdot B = E_n
\]

Wähle $\beta \in L(V, V)$ mit $A^{\mathcal{B}}_{\beta} = B$. $\mathcal{B} = (v_1, \ldots, v_n)$,

\[
B = \begin{pmatrix}
 b_{11} & \ldots & b_{1n} \\
 \vdots & \ddots & \vdots \\
 b_{n1} & \ldots & b_{nn}
\end{pmatrix}
\]

\[\textbf{Mitschrieb von Rouven Walter}\]
\[\beta(v_i) = b_{1i} \cdot v_1 + \ldots + b_{ni} \cdot v_n. \]

\[E_n = A_\alpha^B \cdot A_\beta^B \]

\[\Rightarrow \alpha \circ \beta = \text{id}_V. \]

Analog: \(\beta \circ \alpha = \text{id}_V. \)

\[\beta = \alpha^{-1} \]

Bemerkung

\(V \) n-dimensionaler \(K \)-Vektorraum, \(\mathcal{B} = (v_1, \ldots, v_n) \),
\(v = a_1 \cdot v_1 + \ldots + a_n \cdot v_n \) \(\mapsto \) \(K_\mathcal{B}(v) = (a_1, \ldots, a_n) \in K^n. \)

8.18. Satz

Sei \(\alpha \in L(V, W) \), \(\dim_K(V) = n \), \(\dim_K(W) = m \), \(\mathcal{B}, \mathcal{C} \) Basen von \(V \) und \(W \).

Ist \(v \in V \), so sei \(x = K_\mathcal{B}(v) \) der Koordinatenvektor von \(v \) bzgl. \(\mathcal{B} \).

Dann ist \(A_\alpha^\mathcal{B,\mathcal{C}} \cdot x = K_\mathcal{C}(\alpha(v)) \) der Koordinatenvektor von \(\alpha(v) \) bzgl. \(\mathcal{C} \).

Beweis:

\(\mathcal{B} = (v_1, \ldots, v_n), \mathcal{C} = (w_1, \ldots, w_m), \)

\[A_\alpha^\mathcal{B,\mathcal{C}} = (a_{ij})_{i=1,\ldots,m; j=1,\ldots,n} \]

\[= \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \]

\(v = \sum_{i=1}^{n} c_i \cdot v_i, x = K_\mathcal{B}(v) = (c_1, \ldots, c_n)^t \)

\[\alpha(v) = \alpha \sum_{i=1}^{n} c_i \cdot v_i \]

\[= \sum_{i=1}^{n} c_i \cdot \alpha(v_i) \]

\[= \sum_{i=1}^{n} c_i \cdot \sum_{k=1}^{m} a_{ki} \cdot w_k \]

\[= \sum_{k=1}^{m} \left(\sum_{i=1}^{n} c_i \cdot a_{ki} \right) \cdot w_k \]
\[A_{\alpha}^{B, C} = \begin{pmatrix} \vec{z}_1 \\ \vdots \\ \vec{z}_m \end{pmatrix} \]

\[K_{c}(\alpha(v)) = \begin{pmatrix} \sum_{i=1}^{n} c_{i} \cdot a_{1i} \\ \vdots \\ \sum_{i=1}^{n} c_{i} \cdot a_{mi} \end{pmatrix} = \begin{pmatrix} \vec{z}_1 \cdot x \\ \vdots \\ \vec{z}_m \cdot x \end{pmatrix} = A_{\alpha}^{B, C} \cdot x \]

8.19. Beispiel

\(\dim(V) = 4, \dim(W) = 3, \)
\(B = (v_1, v_2, v_3, v_4) \) Basis von \(V, \)
\(C = (w_1, w_2, w_3) \) Basis von \(W, \)
\(\alpha : V \to W \) lineare Abbildung.

\[A_{\alpha}^{B, C} = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 2 & 0 & -1 & 1 \\ 3 & 2 & 0 & 2 \end{pmatrix} \]

\(v = 5 \cdot v_1 - 6 \cdot v_2 + 7 \cdot v_3 - 2 \cdot v_4. \)

Was ist \(\alpha(v) \) ?

\[K_{B}(v) = \begin{pmatrix} 5 \\ -6 \\ 7 \\ -2 \end{pmatrix} \]

\[K_{c}(\alpha(v)) = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 2 & 0 & -1 & 1 \\ 3 & 2 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ -6 \\ 7 \\ -2 \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \\ -1 \end{pmatrix} \]

\(\alpha(v) = 7 \cdot w_1 + w_2 - w_3. \)
8.20. Korollar

a) $A \in \mathbb{M}_{m,n}(K)$, so ist die Abbildung
\[
\alpha_A : \begin{cases}
K^n \to K^m \\
x \mapsto A \cdot x
\end{cases}
\]
eine lineare Abbildung.

b) Jede lineare Abbildung $K^n \to K^m$ ist von der Form in a).

Verschiedene Matrizen liefern verschiedene Abbildungen und umgekehrt.

Beweis:

a) \[
\alpha_A(x + x') = A \cdot (x + x') \\
= A \cdot x + A \cdot x' \\
= \alpha_A(x) + \alpha_A(x')
\]

\[
\alpha_A(k \cdot x) = A \cdot (k \cdot x) \\
= k \cdot (A \cdot x) \\
= k \cdot \alpha_A(x)
\]

b) \mathcal{B}, \mathcal{C} kanonische Basen in K^n und K^m.

Vektoren in K^n (bzw. K^m) sind selbst ihre Koordinatenvektoren bzgl. \mathcal{B} (oder \mathcal{C}).

Behauptung folgt aus 8.18.

A, B verschiedene Matrizen, z.B. $a_i^j \neq b_i^j$ (Spaltenvektoren)

\[
A \cdot e_i = a_i^j \neq b_i^j = B \cdot e_i
\]

Also $\alpha_A(e_i) \neq \alpha_B(e_i)$, \quad $\alpha_A \neq \alpha_B$.

8.21. Definition

V K-Vektorraum, $\mathcal{B}, \mathcal{B'}$ Basen von V, $\mathcal{B} = (v_1, \ldots, v_n)$, $\mathcal{B'} = (v'_1, \ldots, v'_n)$,

\[
v_j' = \sum_{i=1}^n s_{ij} \cdot v_i, \quad j = 1, \ldots, n,
\]

\[
S_{\mathcal{B},\mathcal{B'}} = (s_{ij})_{i=1,\ldots,n; \ j=1,\ldots,n}
\]
heißt Basiswechselmatrix.

Spalten: Koordinaten der Basisvektoren von \mathcal{B}' bzgl. \mathcal{B}.

Analog:

$$v_k = \sum_{j=1}^{n} t_{jk} \cdot v'_j,$$

$$S_{\mathcal{B}', \mathcal{B}} = (t_{jk})_{j=1,\ldots,n; i=1,\ldots,n}$$

8.22. Satz

$S_{\mathcal{B}, \mathcal{B}'}$ ist invertierbar. Es gilt:

$$(S_{\mathcal{B}, \mathcal{B}'})^{-1} = S_{\mathcal{B}', \mathcal{B}}$$

D.h.

$$S_{\mathcal{B}, \mathcal{B}'} \cdot S_{\mathcal{B}', \mathcal{B}} = E_n$$

Beweis:

$$v_k = \sum_{j=1}^{n} t_{jk} \cdot v'_j$$

$$= \sum_{j=1}^{n} t_{jk} \cdot \left(\sum_{i=1}^{n} s_{ij} \cdot v_i \right)$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} s_{ij} \cdot t_{jk} \right) \cdot v_i$$

$$\sum_{j=1}^{n} s_{ij} \cdot t_{jk} = \delta_{ik}$$

$$= \begin{cases} 1 & i = k \\ 0 & i \neq k \end{cases}$$

$$S_{\mathcal{B}, \mathcal{B}'} \cdot S_{\mathcal{B}', \mathcal{B}} = E_n$$
8.23. Satz

V Vektorraum, $\mathcal{B}, \mathcal{B}'$ Basen von V, $v \in V$.

$x = K_{\mathcal{B}}(v)$ Koordinatenvektor von v bzgl. \mathcal{B},

$x' = K_{\mathcal{B}'}(v)$ Koordinatenvektor von v bzgl. \mathcal{B}'.

Dann gilt:

$$x' = S_{\mathcal{B}', \mathcal{B}} \cdot x$$

Beweis:

$$v_i = \sum_{k=1}^{n} t_{ki} \cdot v'_k$$

$$S_{\mathcal{B}', \mathcal{B}} = (t_{ki})$$

$$v = \sum_{i=1}^{n} a_i \cdot v_i$$

$$K_{\mathcal{B}} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in K^n$$

$$v = \sum_{i=1}^{n} a_i \cdot \left(\sum_{k=1}^{n} t_{ki} \cdot v'_k \right)$$

$$= \sum_{k=1}^{n} \left(\sum_{i=1}^{n} a_i \cdot t_{ki} \right) \cdot v'_k$$

$$K_{\mathcal{B}'}(v) = \begin{pmatrix} \sum_{i=1}^{n} a_i \cdot t_{1i} \\ \vdots \\ \sum_{i=1}^{n} a_i \cdot t_{ni} \end{pmatrix}$$

$$= \begin{pmatrix} t_{11} & \ldots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{n1} & \ldots & t_{nn} \end{pmatrix} \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

$$= S_{\mathcal{B}', \mathcal{B}} \cdot K_{\mathcal{B}}(v)$$
8.24. Beispiel

$V = \mathbb{R}^2$, $\mathcal{B} = (e_1, e_2)$, $\mathcal{B}' = (e_1 + e_2, e_1 - 2e_2)$.

$v = \begin{pmatrix} 5 \\ 3 \end{pmatrix} = K_{\mathcal{B}}(v)$

$K_{\mathcal{B}'}(v) = ?$

$S_{\mathcal{B}', \mathcal{B}}$ berechnen.

$e_1 = t_{11} \cdot (e_1 + e_2) + t_{21} \cdot (e_1 - 2 \cdot e_2)$

$= (t_{11} + t_{21}) \cdot e_1 + (t_{11} - 2 \cdot t_{21}) \cdot e_2$

Koeffizientenvergleich:

$t_{11} + t_{21} = 1$

$t_{11} - 2 \cdot t_{21} = 0$

\Rightarrow

$t_{21} = \frac{1}{3}$

$t_{11} = \frac{2}{3}$

$e_2 = t_{12} \cdot (e_1 + e_2) + t_{22} \cdot (e_1 - 2 \cdot e_2)$

$= (t_{12} + t_{22}) \cdot e_1 + (t_{12} - 2 \cdot t_{22}) \cdot e_2$

Koeffizientenvergleich:

$t_{12} + t_{22} = 0$

$t_{12} - 2 \cdot t_{22} = 1$

\Rightarrow

$3 \cdot t_{12} = 1$

$t_{12} = \frac{1}{3}$

$t_{22} = -\frac{1}{3}$

Mitschrieb von Rouven Walter
\[S_{\mathcal{B},\mathcal{B}'} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \]
\[= \frac{1}{3} \cdot \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \]
\[K_{\mathcal{B}'}(v) = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 3 \end{pmatrix} \]
\[= \begin{pmatrix} \frac{13}{3} \\ \frac{5}{3} \end{pmatrix} \]
\[v = \frac{13}{3} \cdot (e_1 + e_2) + \frac{2}{3} \cdot (e_1 - 2 \cdot e_2) \]
\[\begin{pmatrix} 5 \\ 3 \end{pmatrix} = \frac{13}{3} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{2}{3} \cdot \begin{pmatrix} 1 \\ -2 \end{pmatrix} \]

8.25. Satz

\[\alpha : V \to W \text{ linear}, \mathcal{B}, \mathcal{B}' \text{ Basen von } V, \mathcal{C}, \mathcal{C}' \text{ Basen von } W. \]
\[A_{\alpha}^{\mathcal{B}',\mathcal{C}'} = S_{\mathcal{C}',\mathcal{C}} \cdot A_{\alpha}^{\mathcal{B},\mathcal{C}} \cdot S_{\mathcal{B},\mathcal{B}'} \]

Beweis:

\[v \in V, x = K_{\mathcal{B}}(v), x' = K_{\mathcal{B}'}(v), y = K_{\mathcal{C}}(\alpha(v)), y' = K_{\mathcal{C}'}(\alpha(v)). \]
Nach 8.18 gilt:
\[y = A_{\alpha}^{\mathcal{B},\mathcal{C}} \cdot x \]
\[y' = A_{\alpha}^{\mathcal{B}',\mathcal{C}'} \cdot x' \]
Nach 8.23 gilt:
\[x = S_{\mathcal{B},\mathcal{B}'} \cdot x' \]
\[y' = S_{\mathcal{C}',\mathcal{C}} \cdot y \]
\[A_{\alpha}^{\mathcal{B}',\mathcal{C}'} \cdot x' = y' \]
\[= S_{\mathcal{C}',\mathcal{C}} \cdot y \]
\[= S_{\mathcal{C}',\mathcal{C}} \cdot A_{\alpha}^{\mathcal{B},\mathcal{C}} \cdot x \]
\[= S_{\mathcal{C}',\mathcal{C}} \cdot A_{\alpha}^{\mathcal{B},\mathcal{C}} \cdot S_{\mathcal{B},\mathcal{B}'} \cdot x' \]
gilt für alle $x' \in K^n$.

Nach 8.20b) gilt:

$$A_{\alpha}^{B',c'} = S_{c',c} \cdot A_{\alpha}^{B,c} \cdot S_{B,B'}$$

8.26. Korollar

$\alpha : V \to V, \mathcal{B}, \mathcal{B}'$ Basen von V, $S = S_{B,B'}$.

$$A_{\alpha}^{B'} = S^{-1} \cdot A_{\alpha}^{B} \cdot S$$

(Spezialfall von 8.25)

8.27. Beispiel

$V = \mathbb{R}^2$, $\mathcal{B} = (e_1, e_2)$, $\mathcal{B}' = (\frac{1}{\sqrt{2}}(e_1 + e_2), \frac{1}{\sqrt{2}}(-e_1 + e_2)) = (e'_1, e'_2)$

$$S = S_{\mathcal{B}',\mathcal{B}}$$

$$= \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$S^{-1} = S_{\mathcal{B},\mathcal{B}'}$$

$$= \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$\alpha(e_1) = e_2$, $\alpha(e_2) = e_1$ (Spiegelung an der Gerade durch e'_1).

$$A_{\alpha}^{\mathcal{B}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
\[A_α^{B'} \mid_{8.26} = S^{-1} \cdot A_α^B \cdot S \]
\[= \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} \]
\[= \frac{1}{2} \cdot \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} \]
\[= \frac{1}{2} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]
\[= \begin{pmatrix} 1 \\ 0 \\ -2 \\ 0 \end{pmatrix} \]
\[\alpha(e'_1) = e'_1, \ \alpha(e'_2) = -e'_2, \ \text{Spiegelung an der Gerade durch } e'_1 \ \text{hier besonders deutlich.} \]

Bemerkung zur darauf folgenden Definition:

\[\alpha : V \rightarrow W \ \text{linear, } \dim_K W = m, \ \mathcal{B} = (v_1, \ldots, v_n) \ \text{Basis von } V, \ \mathcal{C} \ \text{Basis von } W. \]

\[\text{rg}(\alpha) = \dim(\alpha(V)) = \dim(\langle \alpha(v_1), \ldots, \alpha(v_n) \rangle) \]

\[i\text{-te Spalte von } A_α^{B,C} = K_\mathcal{C}(\alpha(v_i)) \]

\[\text{rg}(\alpha) = \dim(\langle K_\mathcal{C}(\alpha(v_1)), \ldots, K_\mathcal{C}(\alpha(v_n)) \rangle) \]

\[= \text{Maximalanzahl linear unabhängiger Spalten in } A_α^{B,C} (5.21, 5.28) \]

8.28. Definition

A \(m \times n \)-Matrix. Spaltenrang von \(A \), \(\text{srg}(A) \), ist die Maximalanzahl linear unabhängiger Spalten in \(A \).

A \(m \times n \)-Matrix. Zeilenrang von \(A \), \(\text{zrg}(A) \), ist die Maximalanzahl linear unabhängiger Zeilen in \(A \).

8.29. Satz

\(\alpha : V \rightarrow W \) lineare Abbildung, \(\mathcal{B}, \mathcal{C} \) Basen von \(V, W \), dann gilt:

\[\text{rg}(\alpha) = \text{sr}(A_α^{B,C}) \]
8.30. Satz und Definition

A m \times n\)-Matrix. Dann gilt:

\[\text{srg}(A) = \text{zrg}(A) \]

Dieser gemeinsame Wert heißt Rang von A, \(\text{rg}(A) \).

8.31. Definition

A m \times n\)-Matrix. Die transponierte Matrix \(A^t \) zu A erhält man aus A, indem man die \(i \)-te Zeile von A als \(i \)-te Spalte von \(A^t \) schreibt. \(A^t \) ist n \times m\)-Matrix.

Beispiel:

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \]

\[A^t = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \]

\[(x_1, \ldots, x_n)^t = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \]

8.32. Satz

a) \(\text{srg}(A) = \text{zrg}(A^t) \), \(\text{zrg}(A) = \text{srg}(A^t) \)

b) \((A^t)^t = A \)

c) \((A + B)^t = A^t + B^t \)

d) \((C \cdot D)^t = D^t \cdot C^t \)

e) A invertierbare n \times n\)-Matrix, so ist \(A^t \) invertierbar und \((A^t)^{-1} = (A^{-1})^t \) (WHK, Satz 10.32).
8.33. Lemma

B $n \times m$-Matrix, A $m \times l$-Matrix über K.

a) $\text{srg}(B \cdot A) \leq \min(\text{srg}(A), \text{srg}(B))$

b) Ist $n = m$ und ist B invertierbar, so $\text{srg}(B \cdot A) = \text{srg}(A)$

c) Ist $m = l$ und ist A invertierbar, so $\text{srg}(B \cdot A) = \text{srg}(B)$

(Beweis: Satz 7.14 und 8.29; WHK 10.33)

Beweis von 8.30:

A $m \times n$-Matrix, $\alpha_A : K^n \rightarrow K^m$, $x \mapsto A \cdot x$, \mathcal{B}, \mathcal{C} kanonische Basen von K^n bzw. K^m:

$\alpha_A(e_1) = A \cdot e_1$

$= \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix}$

$= \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}$

$= a_{11} \cdot e_1 + \ldots + a_{m1} \cdot e_m$

Also:

$A_{\alpha_A}^{\mathcal{B}, \mathcal{C}} = A$

Nach 8.29 gilt: $\text{srg}(A) = \text{rg}(\alpha_A)$

Nach 8.5 existieren Basen $\mathcal{B}', \mathcal{C}'$ mit

$B := A_{\alpha_A}^{\mathcal{B}', \mathcal{C}'}$

$= \begin{pmatrix} 1 & \ldots & 0 & \ldots & 0 \\ \vdots & \ddots & 0 & \vdots \\ \vdots & \vdots & 1 & 0 \\ 0 & \ldots & 0 & \ldots & 0 \end{pmatrix}$
Wobei gilt:
Anzahl der Einsen = $\operatorname{rg}(B) = \operatorname{rg}(\alpha_A) = \operatorname{rg}(A)$

\begin{align*}
B &= A_{\alpha_A}^{B'} \cdot e' \\
&= S_{e', c} \cdot A_{\alpha_A}^{B'} \cdot S_{B', B'} \\
&= S \cdot A \cdot T
\end{align*}

Wobei S, T invertierbar sind.

\begin{align*}
B^t &= (S \cdot A \cdot T)^t \\
&= T^t \cdot A^t \cdot S^t
\end{align*}

\begin{align*}
\operatorname{zrg}(A) &= \operatorname{rg}(A^t) \\
&= \operatorname{rg}(T^t \cdot A^t \cdot S^t) \\
&= \operatorname{rg}(B^t) \\
&= \operatorname{zrg}(B) \\
&= \operatorname{rg}(B) \\
&= \operatorname{rg}(A)
\end{align*}

8.34. Korollar

A $m \times n$-Matrix

a) $\operatorname{rg}(A) \leq \min(m, n)$

b) $\operatorname{rg}(A) = \operatorname{rg}(A^t)$

8.35. Definition

Unter elementarer Zeilenumformung einer Matrix versteht man die folgenden Operationen:

1. Addition des skalaren Vielfachen einer Zeile zu einer anderen Zeile
2. Vertauschen zweier Zeilen
3. Multiplikation einer Zeile mit skalarem Vielfachen $\neq 0$

Entsprechend: elementare Spaltenumformung.
8.36. Satz

Bei elementarer Zeilen- oder Spaltenumformung ändert sich der Rang der Matrix nicht.

Beweis:

\[rg(A) = srg(A) = \dim(\langle s_1, \ldots, s_n \rangle) \]

\(s_i\) Spalten von \(A\).

Spaltenumformung vom Typ (1):

\[\langle s_1, \ldots, s_i, \ldots, s_n \rangle = \langle s_1, \ldots, s_i + a \cdot s_j, s_{i+1}, \ldots, s_n \rangle \]

wobei \(j \neq i\).

Spaltenumformung vom Typ (2):

\[\langle s_1, \ldots, s_i, \ldots, s_j, \ldots, s_n \rangle = \langle s_1, \ldots, s_j, \ldots, s_i, \ldots, s_n \rangle \]

Spaltenumformung vom Typ (3):

\[\langle s_1, \ldots, s_i, \ldots, s_n \rangle = \langle s_1, \ldots, a \cdot s_i, \ldots, s_n \rangle \quad \text{wobei} \ a \neq 0 \]

Analog für Zeilenumformungen: \(rg(A) = srg(A) \)

8.37. Satz

Durch elementare Zeilenumformung vom Typ (1) und Typ(2) und ggf. Spaltenvertauschung lässt sich jede Matrix \(A\) auf folgende Gestalt bringen:

(Dreiecksgestalt)

\[
B = \begin{pmatrix}
 b_{11} & * & \cdots & \cdots & \cdots & \cdots & * \\
 0 & b_{22} & * & \cdots & \cdots & & * \\
 0 & \vdots & 0 & \ddots & \ddots & \ddots & \ddots & * \\
 0 & \vdots & \vdots & \ddots & b_{ll} & * & \cdots & * \\
 0 & \vdots & \vdots & \vdots & 0 & 0 & \cdots & 0 \\
 0 & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \\
 0 & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & 0
\end{pmatrix}
\]
Wobei $b_{ii} \neq 0$ für $i = 1, \ldots, l$.

Dann $l = \text{rg}(A)$.
(Denn: $\text{rg}(A) = \text{rg}(B) = z\text{rg}(B) = l$).

Beweis:
WHK, Seite 330/331.

Zeilenvektoren z_1, \ldots, z_l sind linear unabhängig:

\[
\begin{align*}
a_1 \cdot z_1 + \ldots + a_l \cdot z_l &= 0 \\
(a_1 \cdot b_{11}, \ldots) + (0, a_2 \cdot b_{22}, \ldots) + \ldots + (0, \ldots, 0, a_l \cdot b_{ll}, \ldots) &= (0, \ldots, 0)
\end{align*}
\]

1.Stelle: $a_1 \cdot b_{11} = 0$ ($b_{11} \neq 0$) \Rightarrow $a_1 = 0$

2.Stelle: $a_2 \cdot b_{22} = 0$ ($b_{22} \neq 0$) \Rightarrow $a_2 = 0$

\Rightarrow \ldots \Rightarrow $a_l = 0$

Somit z_1, \ldots, z_l linear unabhängig.

8.38. Beispiel

4×5-Matrix über \mathbb{Q}:

\[
A = \begin{pmatrix}
2 & 9 & 4 & 0 & 1 \\
4 & 18 & 8 & -1 & 4 \\
0 & -3 & 1 & 0 & 1 \\
-1 & \frac{3}{2} & -4 & 4 & -\frac{21}{2}
\end{pmatrix}
\]

Was ist $\text{rg}(A) = ?$

1.Schritt:
Nullen in 1.Spalte unterhalb a_{11} erzeugen, indem man geeignete Vielfache der 1.Zeile zu den übrigen addiert. (geht hier, da $a_{11} \neq 0$).

2.Zeile + $(-2) \cdot 1.$Zeile
4.Zeile + $\left(\frac{1}{2}\right) \cdot 1.$Zeile

\[
A_1 := \begin{pmatrix}
2 & 9 & 4 & 0 & 1 \\
0 & 0 & 0 & -1 & 2 \\
0 & -3 & 1 & 0 & 1 \\
0 & 6 & -2 & 4 & -10
\end{pmatrix}
\]

Ab jetzt keine Operationen mit der 1.Zeile.
2. Schritt:

\[\text{Vertauschen: 2. und 3. Zeile} \]
\[
\begin{pmatrix}
2 & 9 & 4 & 0 & 1 \\
0 & -3 & 1 & 0 & 1 \\
0 & 0 & 0 & -1 & 2 \\
0 & 6 & -2 & 4 & -10
\end{pmatrix}
\]

\[4. \text{Zeile} + 2 \cdot 2. \text{Zeile} \]

\[
A_2 := \begin{pmatrix}
2 & 9 & 4 & 0 & 1 \\
0 & -3 & 1 & 0 & 1 \\
0 & 0 & 0 & -1 & 2 \\
0 & 0 & 0 & 4 & -8
\end{pmatrix}
\]

Ab jetzt 2. Zeile nicht mehr verwenden.

3. Schritt:
In der 3. Spalte stehen an der Position 3, 4 Nullen; Matrix ist noch nicht in die gewünschten Form.
Eintrag an Stelle $(3, 3) \neq 0$ erreicht man durch Spaltenvertauschung, z.B. 3. Spalte mit 4. Spalte vertauschen.

\[\text{Vertauschen: 3. und 4. Zeile} \]
\[
\begin{pmatrix}
2 & 9 & 0 & 4 & 1 \\
0 & -3 & 0 & 1 & 1 \\
0 & 0 & -1 & 0 & 2 \\
0 & 0 & 4 & 0 & -8
\end{pmatrix}
\]

\[4. \text{Zeile} + 4 \cdot 3. \text{Zeile} \]

\[
\begin{pmatrix}
2 & 9 & 0 & 4 & 1 \\
0 & -3 & 0 & 1 & 1 \\
0 & 0 & -1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

Somit $\text{rg}(A) = 3$.
8.39. Bemerkung

Verfahren aus 8.37/8.38 lässt sich auf Dimensionsbestimmung eines Vektorraums anwenden:

\[U = \langle u_1, \ldots, u_m \rangle \]

Wobei \(u_i \) nicht notwendig linear unabhängig sind.

Wähle Basis \(\mathcal{B} \) von \(V \), bilde \(K_{\mathcal{B}}(u_i) \).

\[\dim(U) = \dim(\langle K_{\mathcal{B}}(u_1), \ldots, K_{\mathcal{B}}(u_m) \rangle) \]

Bilde Matrix \(M = (K_{\mathcal{B}}(u_1), \ldots, K_{\mathcal{B}}(u_m)) \).

Bestimme \(\text{rg}(M) = \dim(\langle K_{\mathcal{B}}(u_1), \ldots, K_{\mathcal{B}}(u_m) \rangle) = \dim(U) \).

Beispiel:

4-dimensionaler Vektorraum, \(\mathcal{B} = (v_1, v_2, v_3, v_4) \)

\[U = \langle 2 \cdot v_1 + 4 \cdot v_2 - v_4, 9 \cdot v_1 + 18 \cdot v_2 - 3 \cdot v_3 + \frac{3}{2} \cdot v_4, 4 \cdot v_1 + 8 \cdot v_2 + v_3 - 4 \cdot v_4, -v_2 + 4 \cdot v_4, v_1 + 4 \cdot v_2 + v_3 - \frac{21}{2} \cdot v_4 \rangle \]

\[M = \begin{pmatrix} 2 & 9 & 4 & 0 & 1 \\ 4 & 18 & 8 & -1 & 4 \\ 0 & -3 & 1 & 0 & 1 \\ -1 & \frac{3}{2} & -4 & 4 & \frac{-21}{2} \end{pmatrix} \]

\(\text{rg}(M) = 3 \) nach 8.38.

\(\dim(U) = 3 \)

8.40. Satz

A \(n \times n \)-Matrix über \(K \).

\(A \) invertierbar \(\iff \text{rg}(A) = n \)

(d.h. Spalten von \(A \) sind linear unabhängig und ebenso Zeilen)
Beweis:

V n-dimensionaler Vektorraum, \mathcal{B} Basis.
Definiere $\alpha : V \to V$ mit $A^\mathcal{B}_\alpha := A$.

8.17: A invertierbar $\iff \alpha$ invertierbar

7.16:
α invertierbar (d.h. bijektiv)
$\iff \alpha$ surjektiv
$\iff \text{rg}(\alpha) = n$

8.29: $\text{rg}(\alpha) = \text{rg}(A^\mathcal{B}_\alpha) = \text{rg}(A)$
9. Determinanten

8.40:
A n × n-Matrix invertierbar
⇔ \text{rg}(A) = n
(⇔ alle Spalten von A sind linear unabhängig)
(⇔ alle Zeilen von A sind linear unabhängig)

Abbildung

\[
det : \begin{cases}
\mathcal{M}_n(K) \rightarrow K \\
A \mapsto \det(A)
\end{cases}
\]

wird definiert.

Eigenschaft: A invertierbar ⇔ \det(A) ≠ 0.
(A · A\(^{-1}\) = A\(^{-1}\) · A = E\(_n\))

Motivation:
n = 1:
A = (a) invertierbar ⇔ a ≠ 0.
det((a)) = a.

n = 2:
\[
A = \begin{pmatrix} a_{11} & a_{12} \\
a_{21} & a_{22} \end{pmatrix}
\]
invertierbar ⇔ Spalten/Zeilen linear unabhängig.

Wenn A Nullzeile/Nullspalte enthält, so A nicht mehr invertierbar.

A enthalte keine Nullzeile/Nullspalte.
A nicht invertierbar ⇔ \exists c ∈ K :

\[
\begin{pmatrix} a_{11} \\
a_{21} \end{pmatrix} = c \cdot \begin{pmatrix} a_{12} \\
a_{22} \end{pmatrix} = \begin{pmatrix} c \cdot a_{12} \\
c \cdot a_{22} \end{pmatrix}
\]

(a\(_{12}\) ≠ 0, denn sonst a\(_{11}\) = 0, Nullzeile; a\(_{22}\) ≠ 0)
⇔ a\(_{11}\) = c · a\(_{12}\), a\(_{21}\) = c · a\(_{22}\)
\[a_{11} \cdot a_{12}^{-1} = a_{21} \cdot a_{22}^{-1} \]
\[a_{11} \cdot a_{22} - a_{12} \cdot a_{21} = 0 \]
(Das stimmt auch, wenn \(A \) Nullzeile oder Nullspalte enthält)

\[A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \] invertierbar \(\iff \) \(a_{11} \cdot a_{22} - a_{12} \cdot a_{21} \neq 0 \)

\[\det(A) = a_{22} - a_{12} \cdot a_{21} \]

9.1. Definition

Sei \(A \in M_n(K), \; i, j \in \{1, \ldots, n\} \)
\(A_{ij} \in M_{n-1}(K) \) entsteht aus \(A \), indem man in \(A \) die \(i \)-te Zeile und \(j \)-te Spalte weglässt.

Beispiel:

\[
A = \begin{pmatrix} 3 & 4 & 5 \\ 6 & 7 & 8 \\ 9 & 10 & 11 \end{pmatrix}
\]

\[
A_{11} = \begin{pmatrix} 7 & 8 \\ 10 & 11 \end{pmatrix}
\]

\[
A_{23} = \begin{pmatrix} 3 & 4 \\ 9 & 10 \end{pmatrix}
\]

9.2. Definition

\(A \in M_n(K) \).

Ist \(n = 1 \), also \(A = (a) \), so \(\det(A) = a \).

Definiere für \(n > 1 \) die Abbildung \(\det(A) \) rekursiv

\[
\det(A) = \sum_{j=1}^{n} (-1)^{1+j} \cdot a_{1j} \cdot \det(A_{1j}) \quad \text{Entwicklung nach der 1.Zeile}
\]

\[= a_{11} \cdot \det(A_{11}) - a_{12} \cdot \det(A_{12}) + \ldots \pm a_{1n} \det(A_{1n}) \]

\(\det(A) \) heißt **Determinante** von \(A \).
Beispiel:

\[n = 2: \]

\[\det(A) = a_{11} \cdot \det((a_{22})) - a_{12} \cdot \det((a_{21})) = a_{11} \cdot a_{22} - a_{12} \cdot a_{21} \]

9.3. Beispiele

a) \[A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix} \]

\[\det(A) = 3 \cdot 0 - (-2) \cdot 1 = 2 \]

b) \[A = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 2 & 0 \\ 2 & 1 & 3 \end{pmatrix} \]

\[\det(A) = 1 \cdot \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} - 2 \cdot \begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix} + 1 \cdot \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix} = 6 + 6 - 5 = 7 \]

c) \[A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \]

\[\det(A) = a_{11} \cdot (a_{22} \cdot a_{33} - a_{23} \cdot a_{32}) - a_{12} \cdot (a_{21} \cdot a_{33} - a_{23} \cdot a_{31}) + a_{13} \cdot (a_{21} \cdot a_{32} - a_{22} \cdot a_{31}) \]
\[= a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} - a_{13} \cdot a_{22} \cdot a_{31} - a_{11} \cdot a_{23} \cdot a_{32} - a_{12} \cdot a_{21} \cdot a_{33} \]
Schnelles Verfahren um die Determinante einer 3×3-Matrix von Hand zu berechnen bietet die \textit{Regel von Sarrus}.

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 \vdots & \ddots & \vdots \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\]

(Entsprechende Formel gibt es für beliebige $n \times n$-Matrizen; Leibniz-Formel, WHK 10.43)

d) Untere Dreiecks-Matrix:

\[
A = \begin{pmatrix}
 a_{11} & 0 & 0 & \ldots & 0 \\
 a_{21} & a_{22} & 0 & \ldots & 0 \\
 \vdots & \vdots & \ddots & \ddots & 0 \\
 \vdots & \vdots & \ddots & \ddots & 0 \\
 a_{n1} & \ldots & \ldots & \ldots & a_{nn}
\end{pmatrix}
\]

\[
\det(A) = a_{11} \cdot \det\left(\begin{pmatrix}
 a_{22} & 0 & \ldots & 0 \\
 \vdots & \ddots & \ddots & 0 \\
 \vdots & \ddots & \ddots & 0 \\
 a_{n2} & \ldots & \ldots & a_{nn}
\end{pmatrix}\right)
\]

\[
= a_{11} \cdot a_{22} \cdot \det\left(\begin{pmatrix}
 a_{33} & 0 & \ldots & 0 \\
 \vdots & \ddots & \ddots & 0 \\
 \vdots & \ddots & \ddots & 0 \\
 a_{n3} & \ldots & \ldots & a_{nn}
\end{pmatrix}\right)
\]

\[
= \ldots
\]

\[
= a_{11} \cdot \ldots \cdot a_{nn}
\]

\[
\det(A) = \prod_{j=1}^{n} a_{jj}
\]

Insbesondere: \(\det(E_n) = 1\)
9.4. Laplace’scher Entwicklungssatz

a) (Entwicklung nach der \(i\)-ten Zeile)

Für jedes \(i \in \{1, \ldots, n\}\) gilt:

\[
det(A) = \sum_{j=1}^{n}(-1)^{i+j} \cdot a_{ij} \cdot det(A_{ij})
\]

b) (Entwicklung nach der \(j\)-ten Spalte)

Für jedes \(j \in \{1, \ldots, n\}\) gilt:

\[
det(A) = \sum_{i=1}^{n}(-1)^{i+j} \cdot a_{ij} \cdot det(A_{ij})
\]

Vorzeichen bilden Schachbrettmuster:

\[
\begin{pmatrix}
+ & - & + & - & + & \ldots \\
- & + & - & + & - & \ldots \\
+ & - & + & - & + & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
\end{pmatrix}
\]

9.5. Korollar

\(A \in \mathbb{M}_n(K)\).

Es gilt: \(det(A) = det(A^t)\)

9.6. Beispiel

a) \(A = \begin{pmatrix}
2 & 0 & 3 \\
-1 & 0 & 4 \\
2 & 3 & -1
\end{pmatrix}\)

Definition 9.2:

\(det(A) = 2 \cdot (-12) + 3 \cdot (-3) = -33\)

9.4: Entwicklung nach 2.Spalte:

\(det(A) = (-3) \cdot 11 = -33\)

Strategie:

Wähle Zeile oder Spalte mit möglichst vielen Nullen und entwickle nacher dieser (9.4).
b) Obere Dreiecksmatrix:

\[
\begin{vmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 0 & a_{22} & \ldots & a_{2n} \\
 \vdots & \ddots & \ddots & \vdots \\
 0 & \ldots & \ldots & 0
\end{vmatrix}
\]

\[= \det\begin{pmatrix}
 a_{11} & 0 & 0 & \ldots & 0 \\
 a_{12} & a_{22} & 0 & \ldots & 0 \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 a_{1n} & \ldots & \ldots & \ldots & a_{nn}
\end{pmatrix}\]

\[= a_{11} \cdot \ldots \cdot a_{nn}\]

9.7. Rechenregeln für die Determinanten

Sei \(A \in \mathcal{M}_n(K) \).

a) Ist \(A = (s_1, \ldots, s_n) \), \(s_i \) Spaltenvektoren von \(A \)
und \(B = (s_1, \ldots, s_{i-1}, t_i, s_{i+1}, \ldots, s_n) \), so ist
\[
\det(A) + \det(B) = \det(s_1, \ldots, s_{i-1}, s_i + t_i, s_{i+1}, \ldots, s_n)
\]

b) Ist \(A = (s_1, \ldots, s_n) \), \(a \in K \), so ist
\[
\det(s_1, \ldots, s_{i-1}, a \cdot s_i, s_{i+1}, \ldots, s_n) = a \cdot \det(A)
\]

c) \(a \in K \), so ist
\[
\det(a \cdot A) = a^n \cdot \det(A)
\]

d) Vertauscht man 2 Spalten von \(A \), so ändert die Determinante ihr Vorzeichen, d.h.
\[
\det(s_1, \ldots, s_{i-1}, s_i, s_{i+1}, \ldots, s_{j-1}, s_j, s_{j+1}, \ldots, s_n) = -\det(s_1, \ldots, s_{j-1}, s_j, s_{i+1}, \ldots, s_{j-1}, s_i, s_{j+1}, \ldots, s_n)
\]

e) Sind zwei Spalten von \(A \) gleich, so ist
\[
\det(A) = 0
\]

a) b) d) e) gelten analog für Zeilen.

Folgt aus 9.4.
Beachte:

\[\det(A + B) \neq \det(A) + \det(B) \quad \text{im Allgemeinen} \]

\[\det(E_2) + \det(E_2) = 2 \]
\[\neq 4 \]
\[= \det(E_2 + E_2) \]
\[= \det \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \]

Beispielsweise für \(K = \mathbb{Q}, \mathbb{R} \).

\section*{9.8. Bemerkung}

Die Eigenschaften a) b) e) aus 9.7 und \(\det(E_n) = 1 \) charakterisieren die Determinante, d.h. sie ist einzige Funktion \(M_n(K) \rightarrow K \) mit diesen Eigenschaften (WHK).

\section*{9.9. Korollar}

\(A = (s_1, \ldots, s_n) \in M_n(K), \ a \in K, \) dann:

\[\det(s_1, \ldots, s_i + a \cdot s_j, s_{i+1}, \ldots, s_n) = \det(A) \]

für alle \(i \neq j \).

Analog für Zeilen.

\textbf{Beweis:}

\[
\begin{align*}
\det(s_1, \ldots, s_i + a \cdot s_j, s_{i+1}, \ldots, s_n) & \overset{9.7 \ a) b)}{=} \det(s_1, \ldots, s_i, s_{i+1}, \ldots, s_n) + a \cdot \det(s_1, \ldots, s_j, s_{i+1}, \ldots, s_n) \\
& \overset{9.4b)}{=} \det(A) + 0 \\
& = \det(A)
\end{align*}
\]
9.10. Bemerkung

a) Verhalten der Determinante bei elementarer Zeilen-/Spaltenumformung nach 9.7 b) d) und 9.9:
 (1) Addition des Vielfachen einer Zeile/Spalte zu anderen
 ⇒ Determinante ändert sich nicht
 (2) Vertauschen zweier Zeilen/Spalten
 ⇒ Determinante änder ihr Vorzeichen
 (3) Multiplikation einer Zeile/Spalte mit $a \in K$
 ⇒ Determinante ändert sich um Faktor a

b) Strategie zur Determinanten Bestimmung:
 Erzeuge mit elementaren Umformungen vom Typ (1), (2) eine Zeile/Spalte mit möglichst vielen Nullen und entwickle nach dieser.
 Oder gleich:

9.11. Beispiel

a)

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ -1 & 4 & -7 \end{pmatrix}$$

$\text{det}(A) = \text{det} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 6 & -4 \end{pmatrix}$

= Entwicklung nach 1. Spalte
= $12 + 36$
= 48

b)

$$A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ -1 & 0 & 0 & 4 \\ 1 & 3 & 4 & 2 \\ 0 & 3 & 0 & 1 \end{pmatrix}$$
\[\text{det}(A) = -\text{det} \begin{pmatrix} -1 & 0 & 0 & 4 \\ 0 & 1 & 2 & 3 \\ 1 & 3 & 4 & 2 \\ 0 & 3 & 0 & 1 \end{pmatrix}
= -\text{det} \begin{pmatrix} -1 & 0 & 0 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 3 & 4 & 6 \\ 0 & 3 & 0 & 1 \end{pmatrix}
= -\text{det} \begin{pmatrix} -1 & 0 & 0 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & -2 & -3 \\ 0 & 0 & -6 & -8 \end{pmatrix}
= -\text{det} \begin{pmatrix} -1 & 0 & 0 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[\equiv 9.6 \text{ b) } -2 \]

Anderer Weg:
Entwickeln nach 1.Spalte:
\[
det(A) = 1 \cdot \text{det} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 2 \\ 3 & 0 & 1 \end{pmatrix} + 1 \cdot \text{det} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \\ 3 & 0 & 1 \end{pmatrix}
= 3 \cdot \text{det} \begin{pmatrix} 2 & 3 \\ 4 & 2 \end{pmatrix} + 1 \cdot \text{det} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + (-4) \cdot \text{det} \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}
= -24 + (-2) + 24
= -2 \]

9.12. Determinantennmultiplikationssatz

\[A, B \in M_n(K). \]
\[
det(A \cdot B) = \det(A) \cdot \det(B) \]

9.13. Satz

\[A \in M_n(K). \]
A ist invertierbar
⇔ det(A) ≠ 0
(⇔ \text{rg}(A) = n)
(⇔ \text{die Zeilen/Spalten von } A \text{ sind linear unabhängig})
In diesem Fall ist det(A^{-1}) = det(A)^{-1} = \frac{1}{\det(A)}.

Beweis:

„⇐“: Angenommen A ist nicht invertierbar
⇒ Spalten s₁, ..., sₙ von A sind linear abhängig
⇒ ∃i : sᵢ = \sum_{j=1, j≠i}^{n} aⱼ ⋅ sⱼ, aⱼ ∈ K

Nach 9.9:
\[
\begin{align*}
det(A) &= det(s₁, ..., sₙ) \\
&= det(s₁, ..., sᵢ) - \sum_{j=1, j≠i}^{n} aⱼ ⋅ sⱼ, sᵢ+1, ..., sₙ) \\
&= det(s₁, ..., sᵢ−₁, 0, sᵢ+1, ..., sₙ) \\
&= 0 \quad \text{Widerspruch}
\end{align*}
\]

Entwicklung nach i-ter Spalte

„⇒“:

\[
A \cdot A^{-1} = Eₙ
\]

\[
1 = det(Eₙ)
= det(A \cdot A^{-1})
= det(A) \cdot det(A^{-1})
\]

⇒ det(A) ≠ 0.

\[
det(A^{-1}) = \frac{1}{\det(A)}
= det(A)^{-1}
\]

9.14. Definition

A ∈ ℳₙ(K).
Die Adjunkte A^{ad} zu A ist n × n-Matrix A^{ad} = (bᵢⱼ)ᵢ,ⱼ=1,...,n mit

\[
bᵢⱼ = (-1)^{i+j} \cdot det(A_{ji})
\]
9.15. Satz

\(A \in \mathcal{M}_n(K) \).

\(a) \)

\[
A^{ad} \cdot A = A \cdot A^{ad} = \det(A) \cdot E_n = \begin{pmatrix}
\det(A) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \det(A)
\end{pmatrix}
\]

\(b) \) Ist \(\det(A) \neq 0 \), so

\[
A^{-1} = \frac{1}{\det(A)} \cdot A^{ad}
\]

Beweis:

\(a) \) Sei \(i \) fest.

Für jedes \(k \neq i \) gilt:

\[
c_{ik} = \sum_{j=1}^{n} a_{ij} \cdot b_{jk} = \sum_{j=1}^{n} (-1)^{j+k} \cdot a_{ij} \cdot \det(A_{kj})
\]

Entwicklung nach \(k \)-ter Zeile

\[
= \begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{i1} & \cdots & a_{in} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn}
\end{pmatrix}
\]

\(= 9.7 \ e) \)

\(b) \) Folgt aus a).
9.16. Beispiel

\[A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \]

\[\det(A) = -2. \]

\[A^{-1} = -\frac{1}{2} \cdot \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} \]

\[= \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \]

Probe:

\[A \cdot A^{-1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \]

\[= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

9.17. Bemerkung

\[\alpha : V \rightarrow V \] lineare Abbildung, \(\mathcal{B}, \mathcal{B}' \) Basen von \(V \).

\(A^\mathcal{B}_\alpha, A^\mathcal{B'}_\alpha \). 8.26: Es existiert inverse Matrix \(S = S_{\mathcal{B},\mathcal{B}'} \)

\[A^\mathcal{B'}_\alpha = S^{-1} \cdot A^\mathcal{B}_\alpha \cdot S \]

\[\det(A^\mathcal{B'}_\alpha) = \det(S^{-1} \cdot A^\mathcal{B}_\alpha \cdot S) \]

\[= \frac{9.12}{9.13} \det(S^{-1}) \cdot \det(A^\mathcal{B}_\alpha) \cdot \det(S) \]

\[= \frac{1}{\det(S)} \cdot \det(A^\mathcal{B}_\alpha) \cdot \det(S) \]

\[= \det(A^\mathcal{B}_\alpha) \]

Definiere:

\[\det(\alpha) := \det(A^\mathcal{B}_\alpha) \]

\(\mathcal{B} \) beliebige Basis.

(im Allgemeinen: \(\det(A^\mathcal{B}_\alpha) \neq \det(A^\mathcal{B},\mathcal{B}')_\alpha \))
10. Eigenwerte

\(\alpha : V \rightarrow V \) lineare Abbildung.

Wunsch:
Bestimme Basis \(\mathcal{B} \), so dass
\(\mathcal{B} = (v_1, \ldots, v_n) \) mit \(\alpha(v_i) = b_i \cdot v_i \)
\[A_\alpha^{\mathcal{B}} = \begin{pmatrix} b_1 & 0 & \ldots & \ldots & 0 \\ 0 & b_2 & 0 & \ldots & \ldots \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ 0 & \ldots & 0 & b_{n-1} & 0 \\ 0 & \ldots & \ldots & 0 & b_n \end{pmatrix} \]

Geht allerdings im Allgemeinen nicht.

10.1. Beispiele

a) \(\sigma \) Spiegelung an \(\langle e_1 \rangle \) in \(\mathbb{R}^2 \).
\(\mathcal{B} = (e_1, e_2) \)
\[A_\sigma^{\mathcal{B}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

\(\sigma(e_1) = e_1, \sigma(e_2) = (-1) \cdot e_2 \)

b) \(V = \mathbb{R}^2 \), \(\varrho \) Drehung um \(o \) mit Winkel \(\neq k \cdot \pi \).
Es existiert kein \(v \neq o \) mit \(\varrho(v) = b \cdot v \) für ein \(b \in \mathbb{R} \).
Es gibt keine Basis \(\mathcal{B} \), so dass \(A_\varrho^{\mathcal{B}} \) Diagonalmatrix.

10.2. Definition

\(V \) \(K \)-Vektorraum, \(\alpha : V \rightarrow V \) lineare Abbildung.

\(c \in K \) heißt \textit{Eigenwert} von \(\alpha \), falls \(v \in V \), \(v \neq o \), existiert mit \(\alpha(v) = c \cdot v \).
Jedes solche \(v \neq 0 \) heißt \textit{Eigenvektor} zu \(\alpha \) zum Eigenwert \(c \).

Die Menge der Eigenvektoren von \(\alpha \) zu Eigenwert \(c \) zusammen mit Nullvektor \(o \) heißt der \textit{Eigenraum} von \(\alpha \) zu \(c \).
10.3. Satz
Sei \(c \) Eigenwert von \(\alpha \).
Eigenraum von \(c \) zu \(\alpha = \ker(c \cdot \text{id}_V - \alpha) \), also Unterraum von \(V \).

Beweis:

\[
(c \cdot \text{id}_V - \alpha) = c \cdot \text{id}_V(v) - \alpha(v) = c \cdot v - \alpha(v)
\]

Bemerkung:

\(c \) Eigenwert von \(\alpha \) \(\iff \) \(\ker(c \cdot \text{id}_V - \alpha) \neq \{0\} \)

0 Eigenwert von \(\alpha \) \(\iff \) \(\ker(\alpha) \neq \{0\} \)

10.4. Beispiel

a) \(\text{id}_V \) hat nur Eigenwert 1, Eigenraum = \(V \).

b) Spiegelung \(\sigma \) aus 10.1 a):
 Eigenwert 1: Eigenraum = \(\langle e_1 \rangle \)
 Eigenwert -1: Eigenraum = \(\langle e_2 \rangle \)
 Weitere Eigenwerte gibt es nicht.

10.5. Definition

\(A \) \(n \times n \)-Matrix über \(K \). Eigenwerte von \(A \) sind genau die Eigenwerte von

\[
\alpha_A : \begin{cases}
K^n \rightarrow K^n \\
x \mapsto A \cdot x
\end{cases}
\]

10.6. Satz

\(\alpha : V \rightarrow V \) lineare Abbildung, \(B \) Basis von \(V \).
Dann haben \(\alpha \) und \(A^B_\alpha \) die gleichen Eigenwerte.
Beweis:

$K_B : V \to K^n$ Koordinatenabbildung bzgl. B, Vektorraum-Isomorphismus.

$A = A^B_α$, so $α = K^{-1}_B \cdot α_A \cdot K_B$ (8.18).

Ist c Eigenwert von A, so existiert $o \neq x \in K^n$ mit

$$A \cdot x = α_A(x) = c \cdot x$$

so

$$α(K^{-1}_B(x)) = K^{-1}_B \cdot α_A \cdot K_B(K^{-1}_B(x)) = K^{-1}_B \cdot α_A(x) = K^{-1}_B(c \cdot x) = c \cdot K^{-1}_B(x)$$

c ist Eigenwert von $α$.

Umkehrung analog.

10.7. Satz

V n-dimensionaler K-Vektorraum, B Basis von V, $α : V \to V$ linear, $A = A^B_α$, $c \in K$.

Dann sind äquivalent:

1) c ist Eigenwert von $α$

2) $\ker(c \cdot id_V - α) \neq \{o\}$

3) $\det(c \cdot E_n - A) = 0$

Beweis:

(1) \iff (2): Folgt aus 10.3

(2) \iff (3):

$$c \cdot E_n - A = c \cdot E_n - A^B_α = A^B_{c \cdot id_V - α}$$

Mitschrieb von Rouven Walter
det\((c \cdot E_n - A) = 0 \Leftrightarrow c \cdot E_n - A \) ist nicht invertierbar
\[\Leftrightarrow c \cdot \text{id}_V - \alpha \text{ ist nicht invertierbar (nicht bijektiv)} \]
\[\Leftrightarrow c \cdot \text{id}_V - \alpha \text{ ist nicht injektiv} \]
\[\Leftrightarrow \ker(c \cdot \text{id}_V - \alpha) \neq \{0\} \]

Wie berechnet man Eigenwerte von \(\alpha \)?

10.7: Bestimme alle \(c \in K \) mit \(\alpha(c \cdot E_n - A) = 0 \), wobei \(A = A^2_\alpha \).

Betrachte die Funktion
\[
K \to K \\
t \mapsto \det(t \cdot E_n - A)
\]

10.8. Satz

Die Funktion
\[f_A : \begin{cases}
K \to K \\
t \mapsto \det(t \cdot E_n - A)
\end{cases} \]

ist Polynomfunktion vom Grad \(n \), d.h.
\[f_A(t) = \det(t \cdot E_n - A) = t^n + a_{n-1} \cdot t^{n-1} + \ldots + a_0 \]

wobei \(a_0, \ldots, a_{n-1} \in K \) (unabhängig von \(t \)).

Beweis:

Berechne
\[\det\begin{pmatrix}
t - a_{11} & -a_{12} & \ldots & -a_{1n} \\
-a_{21} & t - a_{22} & \ldots & -a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
-a_{n1} & -a_{n2} & \ldots & t - a_{nn}
\end{pmatrix} \]

mit Entwicklungsformel.

10.9. Definition

Das Polynom \(\det(t \cdot E_n - A) = t^n + a_{n-1} \cdot t^{n-1} + \ldots + a_0 \) heißt das *charakteristische Polynom* von \(A \in \mathbb{M}_n(K) \).
10.10. Definition

Ist $\alpha : V \to V$ lineare Abbildung, so ist $\det(t \cdot \text{id}_V - \alpha) = \det(t \cdot E_n - A_\alpha^B)$, ($B$ beliebige Basis) das charakteristische Polynom von α.

10.11. Korollar

Genau dann ist c Eigenwert von α, wenn c Nullstelle des charakteristischen Polynoms von α ist.

10.12. Korollar

Eine lineare Abbildung $\alpha : V \to V$, $\dim(V) = n$, hat höchstens n Eigenwerte.

10.13. Beispiel

a) $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$, B kanonische Basis,

\[
A = A_\alpha^B = \begin{pmatrix} -1 & 2 \\ 4 & -3 \end{pmatrix}
\]

Charakteristisches Polynom von α:

\[
\det(t \cdot E_2 - A) = \det \begin{pmatrix} t + 1 & -2 \\ -4 & t + 3 \end{pmatrix} = (t + 1) \cdot (t + 3) - 8 = t^2 + 4 \cdot t - 5
\]

\[
t^2 + 4 \cdot t - 5 = 0 \quad \text{Nullstellenbestimmung}
\]

\[
t_{1/2} = -2 \pm \sqrt{4 + 5} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}
\]

Also $t^2 + 4 \cdot t - 5 = (t - 1) \cdot (t + 5)$.
Eigenwerte von α: 1 und -5

Eigenvektoren:

Eigenwert 1:

\[
1 \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 4 & -3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \cdot x + 2 \cdot y \\ 4 \cdot x - 3 \cdot y \end{pmatrix}
\]

\[
x = -x + 2 \cdot y \iff 2 \cdot x = 2 \cdot y \\
x = y
\]

\[
y = 4 \cdot x - 3 \cdot y \iff 4 \cdot x = 4 \cdot y \\
x = y
\]

Eigenraum $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (zum Eigenwert 1)

Eigenwert -5:

\[
(-5) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 4 & -3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}
\]

\[-5 \cdot x = -x + 2 \cdot y \iff -4 \cdot x = 2 \cdot y \\
\iff -2 \cdot x = y
\]

\[-5 \cdot y = 4 \cdot x - 3 \cdot y \iff -2 \cdot x = 4 \cdot y \\
\iff -2 \cdot x = y
\]

Eigenraum $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ (zum Eigenwert -5)

\[
B' = \begin{pmatrix} 1 \\ 1 \\ 1 \\ -2 \end{pmatrix}
\]

\[
A_{B'}^\alpha = \begin{pmatrix} 1 & 0 \\ 0 & -5 \end{pmatrix}
\]
b) \(\varphi : \mathbb{R}^2 \to \mathbb{R}^2 \) Drehung um \(\frac{\pi}{2} \) um \(o \), \(B \) kanonische Basis.

\[
A = A^B_\alpha = \begin{pmatrix}
\cos\left(\frac{\pi}{2}\right) & -\sin\left(\frac{\pi}{2}\right) \\
\sin\left(\frac{\pi}{2}\right) & \cos\left(\frac{\pi}{2}\right)
\end{pmatrix} = \begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\]

Charakteristisches Polynom von \(\varphi \):

\[
\det(t \cdot E_2 - A) = \det\begin{pmatrix}
t & 1 \\
-1 & t
\end{pmatrix} = t^2 + 1
\]

hat keine Nullstelle in \(\mathbb{R} \), also \(\varphi \) keine Eigenwerte.

c) Fasse \(\varphi \) als Abbildung \(\tilde{\varphi} : \mathbb{C}^2 \to \mathbb{C}^2 \) auf.

\[
A^B_{\tilde{\varphi}} = \begin{pmatrix}
0 & -1 \\
1 & 0
\end{pmatrix}
\]

Nullstellen von \(t^2 + 1 \): \(i, -i \) (Eigenwerte von \(\tilde{\varphi} \))

Eigenvektor zu \(i \):

\[
i \cdot \begin{pmatrix} x \\ y \end{pmatrix} = A \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}
\]

\(i \cdot x = -y \iff y = -i \cdot x \)

\(i \cdot y = x \iff y = -i \cdot x \)

Eigenraum zum Eigenwert \(i \):

\[
\left\langle \begin{pmatrix} 1 \\ -i \end{pmatrix} \right\rangle
\]

Eigenvektor zu \(-i \):

\[
-i \cdot \begin{pmatrix} x \\ y \end{pmatrix} = A \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}
\]
\[- i \cdot x = - y \quad \Leftrightarrow \quad y = i \cdot x \]
\[- i \cdot y = x \quad \Leftrightarrow \quad y = i \cdot x \]
10.16. Satz

Seien c_1, \ldots, c_r paarweise verschiedene Eigenwerte von $\alpha \in L(V, V)$, v_1, \ldots, v_r Eigenvektoren zu c_1, \ldots, c_r.
Dann sind v_1, \ldots, v_r linear unabhängig.

Beweis:
Induktion nach r:
$r = 1$ stimmt, da $v_1 \neq 0$.
$r - 1 \rightarrow r$:
I.V.: v_1, \ldots, v_{r-1} linear unabhängig.
Angenommen: v_1, \ldots, v_r linear abhängig. Dann

\[v_r = \sum_{i=1}^{r-1} a_i \cdot v_i \]

\[c_r \cdot v_r = \alpha(v_r) = \alpha \left(\sum_{i=1}^{r-1} a_i \cdot v_i \right) \]

\[= \sum_{i=1}^{r-1} a_i \cdot \alpha(v_i) = \sum_{i=1}^{r-1} a_i \cdot c_i \cdot v_i \]

\[c_r \cdot v_r = \sum_{i=1}^{r-1} c_r \cdot a_i \cdot v_i \]

v_1, \ldots, v_{r-1} linear unabhängig.
Koeffizientenvergleich:
$a_i \cdot c_i = a_i \cdot c_r$, $i = 1, \ldots, r - 1$
Da $v_r \neq 0$, existiert mindestens ein i mit $a_i \neq 0$.
Multipliziere $a_i \cdot c_i = a_i \cdot c_r$ mit a_i^{-1}:
$c_i = c_r \frac{1}{a_i}$
Also. v_1, \ldots, v_r linear unabhängig.
10.17. Definition

\(\alpha \in L(V, V) \) heißt diagonalisierbar, falls \(V \) eine Basis \(B \) aus Eigenvektoren zu \(\alpha \) besitzt, d.h.

\[
A_\alpha^B = \begin{pmatrix} c_1 & 0 & \ldots & 0 \\ 0 & \ddots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0 & c_n \end{pmatrix}
\]

\(c_i \in K \) (nicht notwendig verschiedene Eigenwerte)

10.18. Satz

dim\(_K(V) = n \), \(\alpha : V \to V \) lineare Abbildung.
Falls \(\alpha \) \(n \) verschiedene Eigenwerte besitzt, so ist \(\alpha \) diagonalisierbar.
(Hinreichende Bedingung, nicht notwendige! Z.B.: \(\alpha = \text{id}_V \))

Beweis

 Folgt aus 10.16 .

10.19. Satz

dim\(_K(V) = n \), \(\alpha : V \to V \) lineare Abbildung, \(c_1, \ldots, c_r \) seien verschiedene Eigenwerte von \(\alpha \). Dann gilt:

\[
\alpha \text{ diagonalisierbar } \iff V = \bigoplus_{i=1}^r \ker(c_i \cdot \text{id}_V - \alpha)
\]

\[
\iff n = \sum_{i=1}^r \dim(\ker(c_i \cdot \text{id}_V - \alpha))
\]

Beweis

\[
\sum_{i=1}^r \ker(c_i \cdot \text{id}_V - \alpha) = \bigoplus_{i=1}^{10.16} \ker(c_i \cdot \text{id}_V - \alpha)
\]
Basis von $\ker(c_i \cdot \id_V - \alpha) = \mathcal{B}_i$.

$\mathcal{B}_1 \cup \ldots \cup \mathcal{B}_r$, Basis von $\bigoplus_{i=1}^r \ker(c_i \cdot \id_V - \alpha)$

α diagonalisierbar \iff V hat Basis von Eigenvektoren zu α

$\iff \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_r$ Basis von V

$\iff V = \bigoplus_{i=1}^r \ker(c_i \cdot \id_V - \alpha)$

$\iff n = \sum_{i=1}^r \dim(\ker(c_i \cdot \id_V - \alpha))$

Beispiel:

$V = \mathbb{R}^2$, $A_\alpha^\mathbb{B} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$, $\mathcal{B} = (v_1, v_2)$

10.15: Einziger Eigenwert α ist 2.

v Eigenvektor zu α zum Eigenwert 2.

$$v = a_1 \cdot v_1 + a_2 \cdot v_2$$

$$\alpha(v) = 2 \cdot v$$
$$= 2 \cdot a_1 \cdot v_1 + 2 \cdot a_2 \cdot v_2$$

$$\alpha(v) = \alpha(a_1 \cdot v_1 + a_2 \cdot v_2)$$
$$= a_1 \cdot \alpha(v_1) + a_2 \alpha(v_2)$$
$$= a_1 \cdot 2 \cdot v_1 + a_2 \cdot (v_1 + 2 \cdot v_2)$$
$$= (2 \cdot a_1 + a_2) \cdot v_1 + 2 \cdot a_2 \cdot v_2$$

Koeffizientenvergleich:

$2 \cdot a_1 = 2 \cdot a_1 + a_2 \implies a_2 = 0$

$v = a_1 \cdot v_1$

Eigenraum zu $2 = \ker(2 \cdot \id_V - \alpha) = \langle v_1 \rangle$

α ist nicht diagonalisierbar nach 10.19

10.20. Definition

$A \in \mathcal{M}_n(K)$ heißt diagonalisierbar \iff

$$\alpha_A : \begin{cases} K^n \to K^n \\ x \mapsto A \cdot x \end{cases}$$

ist diagonalisierbar

Mitschrieb von Rouven Walter
10.21. Satz

a) $A \in \mathcal{M}_n(K)$ ist diagonalisierbar \iff Es existiert invertierbare Matrix $S \in \mathcal{M}_n(K)$, so dass $S^{-1} \cdot A \cdot S$ Diagonalmatrix ist

b) Hat A n verschiedene Eigenwerte, so ist A diagonalisierbar (hinreichende, nicht notwendige Bedingung).

Beweis

a) \mathcal{B} kanonische Basis von K^n, $A_{\alpha_A}^\mathcal{B}$.

α_A ist diagonalisierbar $\iff \exists$ Basis \mathcal{B}' von K^n, so dass $A_{\alpha_A}^{\mathcal{B}'}$ Diagonalmatrix

$S = S_{\mathcal{B},\mathcal{B}'}$ invertierbare Matrix

$A_{\alpha_A}^{\mathcal{B}'} = S^{-1}AS$ Diagonalmatrix

Umkehrung gilt, da jede invertierbare Matrix Basiswechselmatrix ist.

b) Folgt aus 10.18.
11. Orthogonale Abbildungen auf Euklidische Vektorräume

V n-dimensionaler \mathbb{R}-Vektorraum mit Skalarprodukt $\langle .|\cdot \rangle$.
(Euklidischer Vektorraum)

11.1. Definition

V Euklidischer Vektorraum mit Skalarprodukt $\langle .|\cdot \rangle$, $\alpha : V \rightarrow V$ lineare Abbildung.
α heißt orthogonale Abbildung $\iff \langle \alpha(v)|\alpha(w) \rangle = (v|w)$ für alle $v, w \in V$.

11.2. Folgerungen

a) Orthogonale Abbildungen erhalten die Länge:
\[\|\alpha(v)\| = \|v\| \forall v \in V \]

b) Orthogonale Abbildungen erhalten Winkel:
\[\text{Winkel}(v, w) = \arccos \left(\frac{(v|w)}{\|v\| \cdot \|w\|} \right) \]

c) Orthogonale Abbildungen sind bijektiv, d.h. invertierbar.

d) Ist α orthogonal, so ist auch α^{-1} orthogonal.

e) Sind α, β orthogonale Abbildungen, so ist auch $\alpha \circ \beta$ eine orthogonale Abbildung.

Beweis:

a)
\[\|v\| = \pm \sqrt{(v|v)} \]
\[= \pm \sqrt{(\alpha(v)|\alpha(v))} \]
\[= \|\alpha(v)\| \]
c) $\alpha : V \to V$ linear

\[\alpha \text{ bijektiv } \iff \alpha \text{ injektiv } \iff \ker(\alpha) = \{0\} \]

α orthogonal, $v \in \ker(\alpha)$:
\[\alpha(v) = 0 \]
\[\Rightarrow \|\alpha(v)\| = 0 = \|v\| \]
\[\Rightarrow v = 0 \]

d) Seien $v, w \in V$, α bijektiv:
\[\exists v', w' : v = \alpha(v'), w = \alpha(w') \]
\[(\alpha^{-1}(v)|\alpha^{-1}(w)) = (v'|w') \]
\[\alpha \text{ orthogonal} \]
\[= (\alpha(v')|\alpha(w')) \]
\[\alpha \text{ orthogonal} \]
\[= (v|w) \]

e) Übungsaufgabe.

11.3. Beispiel

a) $V = \mathbb{R}^2$ Spiegelung σ an $\langle w_1 \rangle \neq 0$.
\[w_1 = a_1 \cdot e_1 + a_2 \cdot e_2 \]
\[w_2 = -a_2 \cdot e_1 + a_1 \cdot e_2 \]
\[(w_1|w_2) = 0 \]
\[\mathcal{B} = (w_1, w_2), \]
\[A^B_\sigma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]
\[\sigma(w_1) = w_1, \sigma(w_2) = -w_2. \]
\[\sigma \text{ orthogonale Abbildung}: \]
\[v, w \in V: v = b_1 \cdot w_1 + b_2 \cdot w_2, w = c_1 \cdot w_1 + c_2 \cdot w_2 \]
\[(\sigma(v)|\sigma(w)) = (b_1 \cdot w_1 - b_2 \cdot w_2|c_1 \cdot w_1 - c_2 \cdot w_2) \]
\[= (b_1 \cdot w_1|c_1 \cdot w_1) + (-b_2 \cdot w_2 - c_2 \cdot w_2) \]
\[= (b_1 \cdot w_1|c_1 \cdot w_1) + (b_2 \cdot w_2|c_2 \cdot w_2) \]
\[= (b_1 \cdot w_1 + b_2 \cdot w_2|c_1 \cdot w_1 + c_2 \cdot w_2) \]
\[= (v|w) \]
\[\det(\sigma) = \det(A_\sigma^B) = -1 \]

b) Drehung \(\varrho \) um \(o \) mit Winkel \(\varphi \), \(\mathcal{K} \) kanonische Basis.

\[A_\varphi^\mathcal{K} = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} \]

\(\varrho \) ist orthogonale Abbildung.

\[\det(\varrho) = \det(A_\varphi^\mathcal{K}) = \cos^2(\varphi) + \sin^2(\varphi) = 1 \]

11.4. Satz (Charakterisierung orthogonaler Abbildungen)

\(V \) \(n \)-dimensionaler Euklidischer Vektorraum, \(\mathcal{B} = (v_1, \ldots, v_n) \) Orthonormalbasis, \(\alpha : V \to V \) lineare Abbildung, \(A_\alpha^\mathcal{B} \).

Dann sind äquivalent:

1. \(\alpha \) ist orthogonale Abbildung
2. \(A \cdot A^t = A^t \cdot A = E_n \) (d.h. \(A^t = A^{-1} \))
3. \((\alpha(v_1), \ldots, \alpha(v_n)) \) ist Orthonormalbasis
4. \(||\alpha(v)|| = ||v|| \) für alle \(v \in V \).

Beweis:

(1) \(\Rightarrow \) (2):
\[\mathbf{A} = (a_{ij}) \]

\[\delta_{ij} = (v_i|v_j) = (\alpha(v_i)|\alpha(v_j)) \]

\[= \sum_{k=1}^{n} a_{ki} \cdot v_k \left| \sum_{l=1}^{n} a_{lj} \cdot v_j \right) \]

\[= \sum_{k,l} a_{ki} \cdot a_{lj} \cdot (v_k|v_l) = 0 \text{ für } k \neq l \]

\[= \sum_{k=1}^{n} a_{ki} \cdot a_{kj} \cdot (v_k|v_k) = 1 \]

\[= \sum_{k=1}^{n} a_{ki} \cdot a_{kj} \]

\[= \sum_{k=1}^{n} a_{ik}^t \cdot a_{kj} \]

\[= (\mathbf{A}^t \mathbf{A})_{ij} \]

\[\mathbf{A}^t \mathbf{A} = \mathbf{E}_n \]

\[\mathbf{A} \text{ invertierbar, Multiplikation mit } \mathbf{A}^{-1} \]

\[\mathbf{A}^t = \mathbf{A}^{-1} \]

\[\mathbf{A} \cdot \mathbf{A}^t = \mathbf{E}_n \]

(2) \Rightarrow (3):
Es gilt \[\mathbf{A}^t \mathbf{A} = \mathbf{E}_n \]

\[\delta_{ij} = (\mathbf{A}^t \mathbf{A})_{ij} \]

\[= \sum_{k=1}^{n} a_{ki} \cdot a_{kj} \]

\[= (\alpha(v_i)|\alpha(v_j)) \text{ (wie in (1) } \Rightarrow (2)) \]

\[(\alpha(v_i), \ldots, \alpha(v_n)) \text{ Orthonormalbasis.} \]
(3) \Rightarrow (4):

\[
v = \sum_{i=1}^{n} c_i \cdot v_i
\]
\[
\alpha(v) = \sum_{i=1}^{n} c_i \cdot \alpha(v_i)
\]

\[
\|\alpha(v)\| = \sqrt{\langle \alpha(v) | \alpha(v) \rangle} \quad \text{ONB } \alpha(v_i) \quad \text{ONB}
\]
\[
\sqrt{\sum_{i=1}^{n} c_i^2}
\]
\[
\|v\| = \sqrt{\langle v | v \rangle}
\]

(4) \Rightarrow (1):

6.8a):

\[
\langle v | w \rangle = \frac{1}{2} \cdot (\|v + w\|^2 - \|v\|^2 - \|w\|^2)
\]

Bheauptung folgt.

11.5. Definition

Eine Matrix $A \in \mathcal{M}_n(\mathbb{R})$ heißt *orthogonal*, falls

\[
A^t \cdot A = A^t \cdot A = E_n
\]

11.6. Folgerung

α orthogonale Abbildung auf Euklidischen Vektorraum V, \mathcal{B} Orthonormalbasis von V, $A = A_\mathcal{B}^\alpha$.

a) $\det(\alpha) = \det(A_\mathcal{B}^\alpha) = \pm 1$

b) α hat höchstens 1 oder -1 als Eigenwerte
Beweis:

a)
\[
1 = \det(E_n) = \det(A \cdot A^t) = \det(A) \cdot \det(A^t) = \det(A)^2
\]

⇒ \(\det(A) = \pm 1\)

b) \(c\) Eigenwert zu \(\alpha\), d.h. es existiert \(v \neq 0\): \(\alpha(v) = c \cdot v\)

\[
\|v\| = \|\alpha(v)\| = \|c \cdot v\| = |c| \cdot \|v\|
\]

⇒ \(|c| = 1\)
⇒ \(c = \pm 1\)

11.7. Satz

\(V\) 2-dimensionaler Euklidischer Vektorraum, \(B = (v_1, v_2)\) Orthonormalbasis, \(\alpha\) orthogonale Abbildung auf \(V\), \(A = A_\alpha^B\).

a) Ist \(\det(A) = 1\), so ist

\[
A = \begin{pmatrix}
\cos(\varphi) & -\sin(\varphi) \\
\sin(\varphi) & \cos(\varphi)
\end{pmatrix}
\]

für ein \(\varphi \in [0, 2\pi]\).

\(\alpha\) ist \textit{Drehung} um \(\varphi\) (mit Zentrum 0).

a) Ist \(\det(A) = -1\), so ist

\[
A = \begin{pmatrix}
\cos(\varphi) & \sin(\varphi) \\
\sin(\varphi) & -\cos(\varphi)
\end{pmatrix}
\]

für ein \(\varphi \in [0, 2\pi]\).

Dann gibt es Orthonormalbasis \(C = (w_1, w_2)\) von \(V\), so dass

\[
A_\alpha^C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

\(\alpha\) ist \textit{Spiegelung} an der Achse \(\langle w_1 \rangle\).
Beweis:

\[A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \]

11.4: \(A^t \cdot A = E_2 \)

\[
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{pmatrix}
\]

\[
a^2 + c^2 = b^2 + d^2 = 1
\]

\[\Rightarrow \exists \ \text{eindeutig bestimmte } \varphi, \varphi' \in [0, 2\pi] \text{ mit} \]

\[
a = \cos(\varphi) \\
b = \sin(\varphi) \\
c = \sin(\varphi') \\
d = \cos(\varphi')
\]

\[
0 = ab + cd = \cos(\varphi) \sin(\varphi') + \sin(\varphi) \cos(\varphi') = \sin(\varphi + \varphi')
\]

\[\Rightarrow \varphi + \varphi' \text{ ist ganzzahliges Vielfaches von } \pi.\]

Ist \(\varphi + \varphi' = 0 \) oder \(2\pi \), so ist

\[
b = \sin(\varphi') = \sin(-\varphi) \text{ oder } \sin(2\pi - \varphi) = -\sin(\varphi) = -c
\]

\[
d = \cos(\varphi') = \cos(\varphi) = a
\]
Mathematik 3 für (Bio-)Informatiker 11. Orthogonale Abbildungen auf Eukl. V.-R.

In diesem Fall ist
\[
A = \begin{pmatrix}
\cos(\varphi) & -\sin(\varphi) \\
\sin(\varphi) & \cos(\varphi)
\end{pmatrix}
\]
\[\det(A) = 1\]

\(\alpha\) ist Drehung um \(\varphi\) (mit Zentrum \(o\)).

Ist \(\varphi + \varphi' = \pi\) oder \(3\pi\), so
\[b = \sin(\varphi') = \sin(\varphi) = c\]
\[d = \cos(\varphi') = -\cos(\varphi) = -a\]
\[A = \begin{pmatrix}
\cos(\varphi) & \sin(\varphi) \\
\sin(\varphi) & -\cos(\varphi)
\end{pmatrix}
\]
\[\det(A) = -1\]

Charakteristisches Polynom von \(A\):
\[\det(t \cdot E_2 - A) = (t - \cos(\varphi))(t + \cos(\varphi)) - \sin^2(\varphi)\]
\[= t^2 - \cos^2(\varphi) - \sin^2(\varphi)\]
\[= t^2 - 1\]
\[= (t + 1)(t - 1)\]

\(\alpha\) hat Eigenwerte 1, -1.

Seien \(w_1, w_2\) Eigenvektoren zu 1, -1 von Länge 1.
\[(w_1|w_2) = (\alpha(w_1)|\alpha(w_2))\]
\[= (w_1 - w_2)\]
\[= -(w_1|w_2)\]

\[\Rightarrow (w_1|w_2) = 0, \mathcal{C} = (w_1, w_2)\] Orthonormalbasis.
\[A_{\alpha}^C = \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}\]

Spiegelung an \((w_1)\).
Bemerkung:
Ist \((v_1, v_2)\) positiv orientiert (bewegt man sich von \(v_1\) zu \(v_2\) entgegen dem Uhrzeigersinn, so ist der Winkel \(\frac{\pi}{2}\)), so ist \(\alpha\) Drehung entgegen dem Uhrzeigersinn um \(\varphi\), sonst im Uhrzeigersinn.

11.8. Satz

\(V\) 3-dimensionaler Euklidischer Vektorraum, \(\alpha\) orthogonale Abbildung auf \(V\). Dann tritt einer der folgenden Fälle auf:

a) Es existiert Orthonormalbasis \(\mathcal{B} = (v_1, v_2, v_3)\), so dass

\[
A_\alpha = A_{\alpha}^\mathcal{B} = \begin{pmatrix}
\cos(\varphi) & -\sin(\varphi) & 0 \\
\sin(\varphi) & \cos(\varphi) & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

für \(\varphi \in [0, 2\pi]\).
\[\det(A) = 1.\]

b) Es existiert Orthonormalbasis \(\mathcal{B} = (v_1, v_2, v_3)\), so dass

\[
A_\alpha = A_{\alpha}^\mathcal{B} = \begin{pmatrix}
\cos(\varphi) & -\sin(\varphi) & 0 \\
\sin(\varphi) & \cos(\varphi) & 0 \\
0 & 0 & -1
\end{pmatrix}
\]

für \(\varphi \in [0, 2\pi]\).
\[\det(A) = -1.\]

Bedeutung:

a) \(\alpha\) Drehung um \(\varphi\) parallel zur \(\langle v_1, v_2 \rangle\)-Ebene mit Drehachse \(\langle v_3 \rangle\).

b) \(\alpha\) ist Drehspiegelung:
\(\) Drehung um Achse \(\langle v_3 \rangle\) und Spiegelung an Ebene \(\langle v_1, v_2 \rangle\).

Spezialfälle:

a) \(\varphi = \pi\)

\[
A = \begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

(Achsen-)Spiegelung an \(v_3\)
b) $\varphi = 0$

\[
A = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]

(Ebenen-)Spiegelung an $\langle v_1, v_2 \rangle$

$\varphi = \pi$

\[
A = \begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]

Punktspiegelung an o

11.9. Bemerkung

a) Für geometrische Anwendungen reichen lineare Abbildungen manchmal nicht aus. Man benötigt z.B. Translationen (um Vektor $b \in V$):

\[
t_b(v) = v + b \quad \forall v \in V
\]

(Nicht linear, wenn $b \neq 0$)

Komposition (Hintereinanderausführung) von linearer Abbildung mit Translation: \textit{affine Abbildung}

\[
\beta(v) = \alpha(v) + b \quad \alpha \text{ linear, } b \in V
\]

b) Affine Abbildungen bilden Vektorunterräume nicht notwendig auf Vektorunterräume ab ($(t_b \circ \alpha)(U) = \alpha(U) + b$), sondern auf Nebenklassen von Vektorunterräumen.

Solche $W + c = \{w + c : w \in W\}$, W Vektorraum, $c \in V$, heißen \textit{affine Unterräume} von V.

(Geraden, Ebenen, etc, die nicht notwendig durch o gehen)

Allgemein gilt:
Affine Abbildungen bilden affine Unterräume auf affine Unterräume ab.

\rightarrow \textit{Affine Geometrie} (WHK Kapitel 12)

V Euklidischer Vektorraum: Besonders wichtig:

\textit{Kongruenzabbildungen}: $t_b \circ \alpha$, wobei α orthogonale Abbildung.
Sind diejenigen affinen Abbildungen, die den Abstand zwischen Vektoren festlassen:
\[
\| (t_b \circ \alpha)(v) - (t_b \circ \alpha)(w) \| = \| \alpha(v) + b - \alpha(w) - b \|
\]
\[
= \| \alpha(v) - \alpha(w) \|
\]
\[
= \| \alpha(v) - \alpha(w) \|
\]
\[
= \| v - w \|
\]

c) Hintereinanderausführung affiner (Kongruenz-)Abbildungen ist affine (Kongruenz-)Abbildung.

\[
(t_{b'} \circ \alpha')(t_b \circ \alpha)(v) = t_{b'} \circ \alpha'((\alpha(v) + b)
\]
\[
= \alpha'(\alpha(v)) + \alpha'(b) + b'
\]
\[
= (t_{\alpha'(b)+b'} \circ (\alpha' \circ \alpha))(v)
\]

wobei \(t_{\alpha'(b)+b'} \) Translationsanteil und \(\alpha' \circ \alpha \) linearer Anteil ist.

Ist \(b' = 0, \alpha = \text{id} \):

\[
\alpha' \circ t_b = t_{\alpha'(b)} \circ \alpha'
\]

d) Affine Abbildungen lassen sich nicht durch \(n \times n \)-Matrizen beschreiben.

Es gibt aber Beschreibung durch \((n+1) \times (n+1)\)-Matrizen.

\(\mathcal{B} \) Basis von \(V \), \(\beta = t_b \circ \alpha, K_{\mathcal{B}}(b) = (b_1, \ldots, b_n)^t, A = A_{\mathcal{B}}^{\mathcal{B}}. \)

\[
\beta \rightarrow \begin{pmatrix} A & \ldots & A & b_1 \\ \vdots & \ddots & \vdots \\ A & \ldots & A & b_n \\ 0 & \ldots & 0 & 1 \end{pmatrix}
\]

(Wobei die Einträge mit \(A \) andeuten sollen, dass sich in der linken oberen Ecke die Matrix \(A \) befindet)

\(\beta' = t_{b'} \circ \alpha' \)

\[
\beta' \circ \beta \rightarrow \begin{pmatrix} A' \cdot A & \ldots & A' \cdot A & K_{\mathcal{B}}(\alpha'(b) + b') = A' \cdot K_{\mathcal{B}}(b) + K_{\mathcal{B}}(b') \\ \vdots & \ddots & \vdots & \vdots \\ A' \cdot A & \ldots & A' \cdot A & K_{\mathcal{B}}(\alpha'(b) + b') = A' \cdot K_{\mathcal{B}}(b) + K_{\mathcal{B}}(b') \\ 0 & \ldots & 0 & 1 \end{pmatrix}
\]

\[
= \begin{pmatrix} A' & \ldots & A' & K_{\mathcal{B}}(b') \\ \vdots & \ddots & \vdots & \vdots \\ A' & \ldots & A' & K_{\mathcal{B}}(b') \\ 0 & \ldots & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} A & \ldots & A & K_{\mathcal{B}}(b) \\ \vdots & \ddots & \vdots & \vdots \\ A & \ldots & A & K_{\mathcal{B}}(b) \\ 0 & \ldots & 0 & 1 \end{pmatrix}
\]
Hintereinanderausführung affiner Abbildungen entspricht Produkt der $(n+1) \times (n+1)$-Matrizen.
(homogene Koordinaten)
12. Lineare Gleichungssysteme

12.1. Beispiel

a) Welche Vektoren \((x, y, z)^t \in \mathbb{R}^3\) stehen senkrecht auf \((1, 2, 3)^t\) und \((1, 0, 1)^t\)?

Skalarprodukte gleich 0 setzen:

\[
\begin{align*}
 x + 2y + 3z &= 0 \\
 x + 0y + z &= 0
\end{align*}
\]

2 Gleichungen, 3 Unbekannte.

b) Liegt der Vektor \((1, 2, 3)^t\) im Unterraum \(\langle (2, 1, 1)^t, (−1, 2, 3)^t \rangle\)?

Gibt es \(x, y \in \mathbb{R}\): \((1, 2, 3)^t = x \cdot (2, 1, 1)^t + y \cdot (−1, 2, 3)^t\)?

\[
\begin{align*}
 2x - y &= 1 \\
 x + 2y &= 2 \\
 x + 3y &= 3
\end{align*}
\]

3 Gleichungen, 2 Unbekannte.

12.2. Definition

Allgemeine Form eines linearen Gleichungssystems (LGS) über Körper \(K\):

\[
\begin{align*}
 a_{11}x_1 + \ldots + a_{1n}x_n &= b_1 \\
 \vdots \\
 a_{m1}x_1 + \ldots + a_{mn}x_n &= b_m
\end{align*}
\]

\(m\) Gleichungen, \(n\) Unbekannte.
\(a_{ij}\) Koeffizienten, \(b_i\) rechte Seite.
\(x = (x_1, \ldots, x_n)^t\) heißt Lösung, wenn \(x_1, \ldots, x_n\) sämtliche Gleichungen erfüllen.
LGS heißt *homogen*, falls $b_1 = \ldots = b_m = 0$, sonst *inhomogen*.

\[
A = \begin{pmatrix} a_{11} & \ldots & a_{1n} \\ \vdots \\ a_{m1} & \ldots & a_{mn} \end{pmatrix} \in M_{m,n}(K)
\]

\[
b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in K^m
\]

Obiges Gleichungssystem in Matrixform:

\[
A_{m \times n} \cdot x_{n \times 1} = b_{m \times 1}
\]

A Koeffizientenmatrix des LGS.

$a_1^\top, \ldots, a_n^\top$ Spalten von A, so lässt sich obiges Gleichungssystem auch in *Spaltenform* schreiben:

\[
x_1a_1^\top + \ldots + x_na_n^\top = b
\]

$A \in M_{m,n}(K)$,

\[
\alpha_A : \begin{cases}
K^n \to K^m \\
x \mapsto A \cdot x
\end{cases}
\]

$\mathcal{B}, \mathcal{B}'$ kanonische Basis von K^n, K^m: $A_{\mathcal{B}, \mathcal{B}'}^\top = A$

$a_i^\top = \alpha_A(e_i) = A \cdot e_i, \quad i = 1, \ldots, n.$

Bild von $\alpha_A = \langle \alpha_A(e_1), \ldots, \alpha_A(e_n) \rangle = \langle a_1^\top, \ldots, a_n^\top \rangle$, Bild von A.

12.3. Satz (Existenz einer Lösung eines LGS)

Gleichwertig:

1. $A \cdot x = b$ hat mindestens eine Lösung
2. b liegt im Bild von A
3. $\text{rg}(A) = \text{rg}(A, b)$, wobei (A, b) erweiterte Matrix vom Typ $m \times (n + 1)$ ist
Beweis:

(1) ⇔ (2):
\[A \cdot x = b \text{ hat Lösung } x = (x_1, \ldots, x_n)^t \]
⇔ \[x_1 a_1^t + \ldots + x_n a_n^t = b \]
⇔ \[b \in \langle a_1^t, \ldots, a_n^t \rangle = \text{Bild von } A \]

(2) ⇔ (3):
\[b \in \alpha_A(K^n) = \langle a_1^t, \ldots, a_n^t \rangle \]
⇔
\[
\begin{align*}
\text{rg}(A) &= srg(A) \\
&\quad = \text{dim}(a_1^t, \ldots, a_n^t) \\
&\quad = \text{dim}(a_1^t, \ldots, a_n^t, b) \\
&\quad = srg(A, b) \\
&\quad = \text{rg}(A, b)
\end{align*}
\]

12.4. Beispiel

12.1 b): Liegt \((1, 2, 3)^t\) in \(\langle (2, 1, 1)^t, (-1, 2, 3)^t \rangle\)?

\[
\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = x \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + y \cdot \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}
\]

\[
\begin{align*}
2x - y &= 1 \\
x + 2y &= 2 \\
x + 3y &= 3
\end{align*}
\]

Rangbestimmung:

\[
\begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 2 \\ 2 & -1 & 1 \\ 1 & 3 & 3 \end{pmatrix}
\]
\[
\rightarrow \begin{pmatrix} 1 & 2 & 2 \\ 0 & -5 & -3 \\ 0 & 1 & 1 \end{pmatrix}
\]
\[
\rightarrow \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & -5 & -3 \end{pmatrix}
\]

Mitschrieb von Rouven Walter
\[
\begin{pmatrix}
1 & 2 & 2 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{pmatrix}
\]

\[\text{rg}(A) = 2, \text{rg}(A, b) = 3, \text{somit hat LGS keine Lösung.}\]

12.5. Satz

a) Die Menge der Lösungen des homogenen LGS
\[A \cdot x = 0\]

bildet Unterraum von \(K^n\) der Dimension \(n - \text{rg}(A)\), nämlich die Dimension vom Kern \(\alpha_A (= \text{Kern von } A)\).

b) Ist das inhomogene System \(A \cdot x = b\) lösbar und ist \(x_0\) eine spezielle Lösung, so erhält man alle Lösungen
\[
\{x : A \cdot x = b\} = \{x_0 + y : A \cdot y = 0\}
\]

Lösungen des inhomogenen Systems bilden eine Nebenklasse des Lösungsraums des zugehörigen homogenen Systems.

\[\{x : A \cdot x = b\} = x_0 + \underbrace{\{y : A \cdot y = 0\}}_{\text{Unterraum}}\]

\[\text{affiner Unterraum}\]

Beweis:

a) Lösungsraum von \(A \cdot x = 0\) ist gleich \(\ker(\alpha_A)\)
\[
\dim(\ker(\alpha_A)) = \dim(K^n) - \dim(\alpha_A(K^n)) = n - \text{rg}(A)
\]

b) \(\subseteq\):
\[A \cdot x_0 = b, y \in K^n: A \cdot y = 0\]
\[A \cdot (x_0 + y) = A \cdot x_0 + A \cdot y = b + 0 = b\]
Mathematik 3 für (Bio-)Informatiker 12. Lineare Gleichungssysteme

„⊆“.

\[A \cdot x = b, \]

\[A \cdot (x - x_0) = A \cdot x - A \cdot x_0 \]
\[= b - b \]
\[= 0 \]

\[x = x_0 + \underbrace{(x - x_0)} \]

Lösung des homogenen Systems

12.6. Beispiel

LGS aus 12.1 a):

\[x + 2y + 3z = 0 \]
\[x + z = 0 \]

\[A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \end{pmatrix} \]

rg(A) = 2, Dimension des Lösungsraums 3 − 2 = 1.

12.7. Satz

a) LGS \(A \cdot x = b \) ist genau dann eindeutig lösbar, wenn \(\text{rg}(A) = \text{rg}(A, b) = n \), die Anzahl der Unbekannten.

b) Ist \(A \) eine \(n \times n \)-Matrix (d.h. Anzahl Gleichungen = Anzahl Unbekannte), so ist \(A \cdot x = b \) genau dann eindeutig lösbar, wenn \(\text{det}(A) \neq 0 \). Die eindeutige Lösung ist dann \(x = A^{-1} \cdot b \).

Beweis:

a) \(A \cdot x = b \) lösbar \(\iff \) \(\text{rg}(A) = \text{rg}(A, b) \)

Eindeutigkeit der Lösung \(\iff \) Lösungsraum von zugehörigem homogenen System ist Nullraum
\(\iff n - \text{rg}(A) = 0 \)
\(\iff n = \text{rg}(A) \)
b) Eine $A \times n$-Matrix.

\[A \cdot x \text{ eindeutig lösbar } \iff \begin{align*}
(a) & \quad rg(A) = rg(A, b) = n \\
(\text{srg-zer}) & \quad rg(A) = n \\
(9.13, 8.40) & \quad \det(A) \neq 0
\end{align*} \]

\[\det(A) \neq 0. \text{ Es existiert } A^{-1}. A \cdot x = b \text{ multipliziert mit } A^{-1} \text{ ergibt } x = A^{-1} \cdot b. \]

12.8. Satz

Gegeben ist ein n-dimensionaler K-Vektorraum, $B = (v_1, \ldots, v_n)$ Basis von V,

\[v = x_1 v_1 + \ldots + x_n v_n \quad \rightarrow \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = K_B(v) \]

Sei U Unterraum von V.

Dann existiert eine $m \times n$-Matrix A, $m = n - \dim(U)$, so dass gilt:

\[v \in U \iff A \cdot x = 0 \quad (x = K_B(v)) \]

Ferner existiert zu jedem $w \in V$ ein $b \in K^n$ mit

\[v \in w + U \iff A \cdot x = b \]

Beweis:

Wähle Basis C von U, ergänze durch C' zu Basis von V, $U' = (C')$. $V = U \oplus U'$

\[\pi : \begin{cases} V \rightarrow U' & \text{Projektion auf } U' \text{ mit ker}(\pi) = U \\
 v = u + u' & \rightarrow u' \end{cases} \]

\[A = A_{\pi, B'} \in M_{m,n}(K), \dim(U') = n - \dim(U) = m. \]

\[v \in U \iff \pi(v) = 0 \]

\[\iff A \cdot x = 0 \quad (x = K_B(v)) \]
Sei $w \in V$, $y = K_B(w)$. Setze $b := A \cdot y$

$$v \in w + U \iff v - w \in U$$

$$\iff \pi(v - w) = 0$$

$$\iff A \cdot (x - y) = o$$

$$\iff A \cdot x = A \cdot y = b$$

12.9. Lemma

$A \in \mathbb{M}_{m,n}(K), X \in \mathbb{M}_{n,l}(K), C = A \cdot X \in \mathbb{M}_{m,l}(K)$.

Wendet man die gleichen elementaren Umformungen auf A und auf C an, so gilt für die entstehenden Matrizen A', C':

$$A' \cdot X = C'$$

Beweis:

Nachrechnen.

12.10. Gauß-Algorithmus

- Zeilenumformung der ersten Zeilen.
- Spaltenvertauschungen an (A, b), um „Dreiecksgestalt“ zu erhalten.
 * Spaltenvertauschung nur innerhalb der ersten n Spalten (die von A kommen)
 * Erzeugungen von Nullstellen unterhalb der Diagonale wird nicht auf die letzte Spalte angewendet.

12.9: Lösungsmenge ändert sich nicht bei den Zeilenumformungen

Spaltenvertauschungen: Spalte i und j vertauschen → Vertauschungen der Unbekannten x_i und x_j (Buchführung!)

Man erhält dann:

\[
\begin{bmatrix}
 a_{11}' & \cdots & \cdots & a_{1n}' & b_1' \\
 \vdots & \ddots & \ddots & \vdots & \vdots \\
 0 & 0 & a_{rr}' & \cdots & a_{rn}' & b_r' \\
 \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
 0 & 0 & 0 & 0 & b_{m}'
\end{bmatrix}
\]

$a_{ij}' \neq 0, i = 1, \ldots, r$.

$rg(A_i) = rg(A_i'), \; rg(A, b) = rg(A', b')$

Neues LGS: $A' \cdot x' = b'$, $x' = (x_1', \ldots, x_n')^t$ entsteht aus x durch Permutation der Position

Mitschrieb von ROUVEN WALTER 165
Lösungsmenge von $A' \cdot x' = b'$ leicht zu ermitteln:

(1) Ist $r < m$ und ist mindestens ein $b'_{r+1}, \ldots, b'_m \neq 0$, so ist LGS nicht lösbar (12.3).

(2) Ist $r = m$ oder $r < m$ und $b'_{r+1} = \ldots = b'_m = 0$, so ist $\text{rg}(A') = \text{rg}(A', b')$. Es existiert mindestens eine Lösung.

(Im Fall $r < m$ braucht man nur die ersten r Gleichungen zu betrachten)

(2a) $r < n$, so kann man x'_{r+1}, \ldots, x'_n frei wählen.

\[
x'_r = \frac{1}{a'_{rr}} \cdot (b'_r - \sum_{k=r+1}^{n} a'_{rk} \cdot x'_k) \\
\vdots \\
x'_1 = \frac{1}{a'_{11}} \cdot (b'_1 - \sum_{k=2}^{n} a'_{1k} \cdot x'_k)
\]

(rekursive Bestimmung der Lösungen)

Z.B.: $x'_{r+1} = \ldots = x'_n = 0$ liefert spezielle Lösung von $A' \cdot x' = b'$.

Betrachte: $A' \cdot x' = o$. Basis des Lösungsraums.

Setze nacheinander

\[
(x'_{r+1}, \ldots, x'_n) = (1, 0, \ldots, 0) \rightarrow \text{Berechne zugehörige } x'_r, \ldots, x'_1 \\
\vdots \\
= (0, 0, \ldots, 1) \rightarrow \text{Berechne zugehörige } x'_r, \ldots, x'_1
\]

Alle linear unabhängig.

(2b) $r = n$, so sind x'_1, \ldots, x'_n eindeutig bestimmt.

\[
x'_n = \frac{b'_n}{a'_{nn}} \\
x'_{n-1} = \frac{1}{a'_{n-1,n-1}} \cdot (b'_{n-1} - a'_{n-1,n} \cdot x'_n) \\
\vdots \\
x'_1 = \frac{1}{a'_{11}} \cdot (b'_1 - \sum_{k=2}^{n} a'_{1k} \cdot x'_k)
\]
12.11. Beispiel

a) \(K = \mathbb{R} \).

\[
\begin{align*}
x_1 + 2x_2 + x_3 + x_4 &= 0 \\
x_1 - x_2 + 2x_3 - x_4 &= 0
\end{align*}
\]

\[
\begin{pmatrix}
1 & 2 & 1 & 1 \\
1 & -1 & 2 & -1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 2 & 1 & 1 \\
0 & -3 & 1 & -2
\end{pmatrix}
\]

\(x_3 = 0, x_4 = 1: \) \(\left(\frac{1}{3}, -\frac{2}{3}, 0, 1 \right)^t \)

\[
\begin{align*}
-3x_2 &= 2 \\
x_2 &= \frac{2}{3} \\
x_1 &= -2x_2 - x_3 - x_4 \\
&= \frac{4}{3} - 1 \\
&= \frac{1}{3}
\end{align*}
\]

\(x_3 = 1, x_4 = 0: \) \(\left(-\frac{5}{3}, \frac{1}{3}, 1, 0 \right)^t \)

\[
\begin{align*}
-3x_2 &= -1 \\
x_2 &= \frac{1}{3} \\
x_1 &= -2x_2 - x_3 - x_4 \\
&= -\frac{2}{3} - 1 \\
&= -\frac{5}{3}
\end{align*}
\]

Lösungsraum:

\[
\left\langle \left(\frac{1}{3}, -\frac{2}{3}, 0, 1 \right)^t, \left(-\frac{5}{3}, \frac{1}{3}, 1, 0 \right)^t \right\rangle = \left\{ \left(\frac{a - 5b}{3}, -\frac{2a + b}{3}, b, a \right)^t : a, b \in \mathbb{R} \right\}
\]

b) \(K = \mathbb{R} \).

\[
\begin{align*}
x_1 + 2x_2 + x_3 + x_4 &= 1 \\
x_1 - x_2 + 2x_3 - x_4 &= 5
\end{align*}
\]
\[\begin{pmatrix} 1 & 2 & 1 & 1 & 1 \\ 1 & -1 & 2 & -1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & -3 & 1 & -2 & 4 \end{pmatrix} \]

Spezielle Lösung: \(x_3 = x_4 = 0 \)

\[-3x_2 = 4 \]
\[x_2 = \frac{-4}{3} \]
\[x_1 + 2x_2 = 1 \]
\[x_1 = 1 - 2x_2 \]
\[= \frac{11}{3} \]

Lösungsmenge:

\[\left\{ \begin{pmatrix} 11 + a - 5b & -4 - 2a + b \cr 3 & 3 \end{pmatrix}, b, a \right\}^t : a, b \in \mathbb{R} \]

c) \(K = \mathbb{R} \).

\[x_1 + 2x_2 + 3x_3 + 4x_4 = 5 \]
\[x_1 + 3x_2 + 5x_3 + 7x_4 = 9 \]

\[\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 7 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} \]

Spezielle Lösung:
Setze \(x_3 = x_4 = 0 \).
\(x_2 = 4, x_1 = -3. \)
\((-3, 4, 0, 0)^t\)

Allgemeine Lösung des homogenen Systems:
\(x_4 = 1, x_3 = 0: \)
\(x_2 = -3, x_1 = 2, \)
\((2, -3, 0, 1)^t\)
\(x_4 = 0, x_3 = 1: \)
\(x_2 = -2, x_1 = 1, \)
\((1, -2, 1, 0)^t\)

Lösungsraum des homogenen Systems:

\[\{ (2a + b, -3a - 2b, b, a)^t : a, b \in \mathbb{R} \} \]
Lösungsmenge des inhomogenen Systems:
\[\{ (-3 + 2a + b, 4 - 3a - 2b, b, a)^t : a, b \in \mathbb{R} \} \]

d) \(K = \mathbb{R} \).

\[
\begin{align*}
 x_1 + 2x_2 - 3x_3 &= 4 \\
 2x_1 - x_2 + x_3 &= 0 \\
 x_1 + x_2 + 2x_3 &= 1
\end{align*}
\]

\[
\begin{pmatrix}
 1 & 2 & -3 & 4 \\
 2 & -1 & 1 & 0 \\
 1 & 1 & 2 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 1 & 2 & -3 & 4 \\
 0 & -5 & 7 & -8 \\
 0 & -1 & 5 & -3
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 1 & 2 & -3 & 4 \\
 0 & -5 & 7 & -8 \\
 0 & 0 & 18 & -7
\end{pmatrix}
\]

Eindeutige Lösung:

\[
x_3 = -\frac{7}{18}
\]

\[
-5x_2 - \frac{49}{18} = -8
\]

\[
x_2 = \left(-\frac{1}{5} \right) \cdot \left(-8 + \frac{49}{18} \right)
\]

\[
= \left(-\frac{1}{5} \right) \cdot \left(-\frac{95}{18} \right)
\]

\[
= \frac{19}{18}
\]

\[
x_1 + \frac{38}{18} + \frac{21}{18} = 4
\]

\[
x_1 = \frac{72 - 38 - 21}{18}
\]

\[
= \frac{13}{18}
\]

\[
\left(\frac{13}{18}, \frac{19}{18}, -\frac{7}{18} \right)^t
\]
e) $K = \mathbb{R}$.

\[
\begin{align*}
 x_1 + x_2 + x_3 &= 0 \\
 x_1 + x_2 - 2x_3 &= 1
\end{align*}
\]

\[
\begin{pmatrix}
 1 & 1 & 1 & 0 \\
 1 & 1 & -2 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 1 & 1 & 1 & 0 \\
 0 & 0 & -3 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 1 & 1 & 1 & 0 \\
 0 & -3 & 0 & 1
\end{pmatrix}
\]

2. und 3. Spalte wurden vertauscht, daher:

\[
\begin{align*}
x_1' &= x_1 \\
x_2' &= x_3 \\
x_3' &= x_2
\end{align*}
\]

Spezielle Lösung des inhomogenen Systems:
\[
x_3' = 0, \quad x_2' = -\frac{1}{3}, \quad x_1' = \frac{1}{3}
\]

Allgemeine Lösung des homogenen Systems:
\[
x_3' = 1, \quad x_2' = 0, \quad x_1' = -1
\]

Allgemeine Lösung des inhomogenen Systems: (in x_1, x_2, x_3)

\[
\left(\frac{1}{3}, 0, -\frac{1}{3} \right)^t + ((-1, 1, 0)^t) = \left\{ \left(\frac{1}{3} - a, a, -\frac{1}{3} \right) : a \in \mathbb{R} \right\}
\]

f) \[
\begin{align*}
 x_1 + x_2 &= 1 \\
 2x_1 + x_2 &= 2 \\
 x_1 - x_2 &= -1
\end{align*}
\]

$K = \mathbb{Z}_2$:

\[
\begin{pmatrix}
 1 & 1 & 1 \\
 0 & 1 & 0 \\
 1 & 1 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 1 & 1 & 1 \\
 0 & 1 & 0 \\
 0 & 0 & 0
\end{pmatrix}
\]

Eindeutige Lösung: $x_2 = 0, x_1 = 1$
\[K = \mathbb{Z}_3: \]
\[
\begin{pmatrix}
1 & 1 & 1 \\
2 & 1 & 2 \\
1 & 2 & 2
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 1 & 1 \\
0 & 2 & 0 \\
0 & 1 & 1
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 1 & 1 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

Keine Lösung, da \(\text{rg}(A) = 2 \neq 3 = \text{rg}(A, b) \).

A invertierbare \(n \times n \)-Matrix, \(A \cdot A^{-1} = E_n \).

Man kann \(A \) durch elementare Zeilenumformung auf die Form \(E_n \) bringen (alle 3 Typen von Zeilenumformungen).

Wie bei Gauß-Verfahren, aber auch oberhalb des jeweiligen Diagonalglieds Nullen erzeugen. Jede Zeile mit dem Inversen des zugehörigen Diagonalglieds multiplizieren. Führt man dieselben Umformungen an \(E_n \) durch, so erhalten wir Matrix \(A' \):

12.9: \(B \cdot X = C, B' \cdot X = C' \)

\[
A \cdot A^{-1} = E_n \\
\underline{E_n \cdot A^{-1}} = A'
\]

D.h.

\[
A' = A^{-1}
\]

\[
(A \mid E_n) \rightarrow (E_n \mid A^{-1})
\]

12.13. Beispiel

\(K = \mathbb{R} \).

\[
A = \begin{pmatrix}
1 & 0 & 2 \\
2 & 2 & 1 \\
0 & 1 & 0
\end{pmatrix}
\]

Mitschrieb von Rouven Walter
Bestimmung des Inversen nach 12.12:

\[
\begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
2 & 2 & 1 & | & 0 & 1 & 0 \\
0 & 1 & 0 & | & 0 & 0 & 1 \\
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 2 & -3 & | & -2 & 1 & 0 \\
0 & 1 & 0 & | & 0 & 0 & 1 \\
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -\frac{3}{2} & | & -1 & \frac{1}{2} & 0 \\
0 & 0 & \frac{5}{2} & | & 1 & -\frac{1}{2} & 1 \\
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -\frac{3}{2} & | & -1 & \frac{1}{2} & 0 \\
0 & 0 & 1 & | & \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & | & -\frac{1}{3} & \frac{2}{3} & -\frac{4}{3} \\
0 & 1 & 0 & | & 0 & \frac{1}{3} & 0 \\
0 & 0 & 1 & | & \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
\end{pmatrix}
\]

\[
A^{-1} = \begin{pmatrix}
-\frac{1}{3} & \frac{2}{3} & -\frac{4}{3} \\
0 & 0 & 1 \\
\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
\end{pmatrix}
\]
13. Mehrdimensionale Analysis

Folgen in \mathbb{R}^n, $(u_i)_{i \in \mathbb{N}}, a_i \in \mathbb{R}^n$

Funktion $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^n$

Euklidische Norm

$$\|a\| = \sqrt{\sum_{i=1}^{n} a_i^2}$$

mit $a = (a_1, \ldots, a_n)^t \in \mathbb{R}^n$, ersetzt den Betrag.

$a, b \in \mathbb{R}^n$: Abstand von a und b:

$$\|a - b\| = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

Damit Konvergenzbegriff wie in \mathbb{R}:

13.1. Definition

$(a_i)_{i \in \mathbb{N}}$ Folge in \mathbb{R}^n konvergiert gegen $c \in \mathbb{R}^n$

$\iff \forall \varepsilon > 0 \exists N = N(\varepsilon) \forall i \leq N : \|a_i - c\| < \varepsilon$

$(a_i) \rightarrow c$.

13.2. Bemerkung

$$a_i = \begin{pmatrix} a_{i(1)} \\ \vdots \\ a_{i(n)} \end{pmatrix}$$

$$c = \begin{pmatrix} c_{(1)} \\ \vdots \\ c_{(n)} \end{pmatrix}$$
\((a_i) \to c \iff a_i^{(j)} \to c^{(j)}\) für alle \(j = 1, \ldots, n\).

13.3. Beispiel

\[
\begin{pmatrix}
\frac{1}{n} \\
0 \\
1 - \left(\frac{1}{n}\right)
\end{pmatrix}
\]

Folge in \(\mathbb{R}^3\)

\[(a_i) \to \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \]

Bemerkung

Funktionen:
Elemente in \(\mathbb{R}^n\) wahlweise als Spalten- oder Zeilenvektor.

13.4. Beispiel

a) \(f : D \subseteq \mathbb{R}^n \to \mathbb{R}\) (*Skalare Funktion*)

Beispiel:

\[
\begin{align*}
 f(x_1, x_2, x_3) &= x_1^2 + x_2^2 + x_3^2 & D = \mathbb{R}^3 \\
 f(x, y) &= \frac{x \cdot y}{x^2 + y^2} & D = \mathbb{R}^3 \setminus \{(0, 0)\}
\end{align*}
\]

Speziell: \(n = 2\)

\(f : \mathbb{R}^2 \to \mathbb{R}\) lassen sich veranschaulichen durch Graph

\[
\left\{ \begin{pmatrix} x \\ y \\ f(x, y) \end{pmatrix} : \begin{pmatrix} x \\ y \end{pmatrix} \in D \subseteq \mathbb{R}^2 \right\} \subseteq \mathbb{R}^3
\]

b) *Vektorwertige Funktionen*

\(f : D \subseteq \mathbb{R}^n \to \mathbb{R}^m\) \((m > 1)\)

Zum Beispiel:

\[
\begin{align*}
f : \mathbb{R}^2 &\to \mathbb{R}^3 \\
f(x_1, x_2) &= \left(f_1(x_1, x_2), f_2(x_1, x_2), f_3(x_1, x_2) \right) \\
&= \left(\frac{1}{x_1^2 + x_2^2}, \sin(x_1), \frac{1}{x_1 \cdot x_2} \right)
\end{align*}
\]
c) \(f : D \subseteq \mathbb{R} \rightarrow \mathbb{R}^n \) (Beschreiben Kurve im \(\mathbb{R}^n \))

\(n = 2: \) ebene Kurven

\[f : \begin{cases} \mathbb{R} \rightarrow \mathbb{R}^2 \\ t \mapsto (\cos(t), \sin(t)) \end{cases} \]

beschreibt Einheitskreis

13.5. Definition

a) \(a \in \mathbb{R}^n \) heißt Adhärenzpunkt von \(D \subseteq \mathbb{R}^n \), falls eine Folge \((d_i)_{i \in \mathbb{N}} \) existiert, \(d_i \in D \),

\(\lim_{i \rightarrow \infty} d_i = a \)

b) \(f : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m \), a Adhärenzpunkt von \(D \). Es ist \(\lim_{x \rightarrow a} f(x) = c \in \mathbb{R}^m \), falls

für jede Folge \((d_i)_{i \in \mathbb{N}} \rightarrow a, d_i \in D \), gilt:

\[\lim_{i \rightarrow \infty} f(d_i) = c \quad \text{Grenzwert} \]

c) \(f : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(a \in D \).

\(f \) ist stetig in \(a \) ⇔ \(\lim_{x \rightarrow a} f(x) = f(a) \)

13.6. Satz

\(f : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m. \)

\[\lim_{x \rightarrow a} f(x) = c \quad \Leftrightarrow \quad \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D : \|x - a\| < \delta \Rightarrow \|f(x) - x\| < \varepsilon \]

13.7. Satz

a) \(f : D \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m \), \(f(x) = (f_1(x), \ldots, f_m(x)), x \in D \)

\[\lim_{x \rightarrow a} f(x) = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \quad \Leftrightarrow \quad \lim_{x \rightarrow a} f_i(x) = c_i \quad \text{für } i = 1, \ldots, m \]

\((f_i : D \rightarrow \mathbb{R}) \)

Insbesondere:

\(f \) ist stetig in \(a \) ⇔ \(f_i \) ist stetig in \(a_i \) für \(i = 1, \ldots, m \)

(Konzentration auf skalare Funktionen)
b) \(f, g : D \subseteq \mathbb{R}^n \to \mathbb{R} \), a Adhärenzpunkt von \(D \).

Existiert \(\lim_{x \to a} f(x) = c \) und \(\lim_{x \to a} g(x) = d \), so auch

\[
\begin{align*}
\lim_{x \to a} (f + g)(x) &= c + d \\
\lim_{x \to a} (f \cdot g)(x) &= c \cdot d \\
\lim_{x \to a} \left(\frac{f}{g} \right)(x) &= \frac{c}{d} \quad \text{(falls } d \neq 0) \end{align*}
\]

c) Summe, Produkt, Quotient stetiger skalarer Funktionen sind stetig.

d) \(f : D \subseteq \mathbb{R}^n \to \mathbb{R}^m, g : C \subseteq \mathbb{R}^m \to \mathbb{R}^l \),

\(f(D) \subseteq C \), \(g \circ f : D \subseteq \mathbb{R}^n \to \mathbb{R}^l \).

\(f, g \text{ stetig } \implies g \circ f \text{ stetig} \)

13.8. Beispiel

a) \(f(x_1, \ldots, x_n) = x_i \) ist stetig.

Nach 13.7 c) sind alle Polynomfunktionen stetig.

Polynomfunktionen sind Summen von Monomen.

Monome: \(a \cdot x_1^{m_{11}} \cdot x_2^{m_{12}} \cdot \ldots \cdot x_n^{m_{1n}}, m_i \in \mathbb{N}_0 \)

Beispiel:

\(f(x_1, x_2) = x_1^3 + x_1 \cdot x_2^4 + 2 \cdot x_2 \)

b)

\(f(t) = (\cos(t), \sin(t)) \) stetig (13.7 a))

c)

\[
\begin{align*}
f(x_1, x_2) &= \begin{cases}
 \frac{x_1 \cdot x_2}{x_1^2 + x_2^2} & (x_1, x_2) \neq (0, 0) \\
 0 & (x_1, x_2) = (0, 0)
\end{cases}
\end{align*}
\]

\(f \) ist stetig in \(\mathbb{R}^2 \setminus \{(0,0)\} \) (13.7).

\[
\begin{align*}
\left(\frac{1}{n}, \frac{1}{n} \right)_{n \in \mathbb{N}} &\to (0,0) \\
f \left(\frac{1}{n}, \frac{1}{n} \right) &= \frac{1 \cdot n^2}{2 \cdot n^2} \\
&= \frac{1}{2} \\
\left(f \left(\frac{1}{2}, \frac{1}{2} \right) \right) &\to \frac{1}{2} \neq 0 = f(0,0)
\end{align*}
\]
Also ist \(f \) nicht stetig in \((0,0)\).

Auch die Definition \(f(0,0) = \frac{1}{2} \) hätte \(f \) nicht zur stetigen Funktion gemacht:

\[
\left(\frac{1}{n}, 0 \right)_{n \in \mathbb{N}} \to (0,0)
\]

\[
f\left(\frac{1}{n}, 0 \right) = 0
\]

\[
\left(f\left(\frac{1}{n}, 0 \right) \right) \to 0 \neq 0 = \frac{1}{2} = f(0,0)
\]

\[
\lim_{x \to (0,0)} f(x) \text{ existiert nicht}
\]

13.9. Definition

a) \(a \in \mathbb{R}^n, r \in \mathbb{R}, r \geq 0 \)

\[
B(a, r) = \{x \in \mathbb{R}^n : \|x - a\| < r\}
\]

offene Kugel vom Radius \(r \) von \(a \).

\[
\overline{B}(a, r) = \{x \in \mathbb{R}^n : \|x - a\| \leq r\}
\]

abgeschlossene Kugel vom Radius \(r \) von \(a \).

b) \(U \subseteq \mathbb{R}^n \) heißt *offen*, falls zu jedem \(a \in U \) eine reelle Zahl \(r(a) > 0 \) existiert mit \(B(a, r(a)) \subseteq U \).

(Offene Kugeln sind offene Mengen, \(\mathbb{R}^n, \mathbb{R}^n \setminus \{P_1, \ldots, P_r\} \))

13.10. Definition

\(U \subseteq \mathbb{R}^n \) offen, \(f : U \to \mathbb{R}^m, a \in U, a = (a_1, \ldots, a_n) \).

\[
f(x_1, \ldots, x_n) = \begin{pmatrix} f_1(x_1, \ldots, x_n) \\ \vdots \\ f_n(x_1, \ldots, x_n) \end{pmatrix}
\]

\(f \) heißt **partiell nach \(x_j \) an der Stelle \(a \) differenzierbar**, falls für jede der Funktionen \(f_i : \mathbb{R}^n \to \mathbb{R} \) gilt:

Mitschrieb von Rouven Walter
Die reellwertige Funktion \(f_i(a_1, \ldots, a_{j-1}, t, a_j+1, \ldots, a_n) \) einer Variablen ist an der Stelle \(a_j \) differenzierbar, d.h.
\[
\lim_{t \to a_j} \frac{f_i(a_1, \ldots, a_{j-1}, t, a_j+1, \ldots, a_n) - f_i(a_1, \ldots, a_{j-1}, a_j, a_j+1, \ldots, a_n)}{t - a_j}
\]
existieren.
Dieser Grenzwert: partielle Ableitung von \(f_i \) nach \(x_j \) an der Stelle \(a_j \).

\[
\frac{\delta f_i(a)}{\delta x_j} \quad (\delta f_i \text{ nach } \delta x_j \text{ an der Stelle } a)
\]

Sind alle \(f_i \) nach allen \(x_j \) partiell differenzierbar an Stelle \(a \)
\[
\begin{pmatrix}
\frac{\delta f_1(a)}{\delta x_1} & \cdots & \frac{\delta f_1(a)}{\delta x_n} \\
\vdots & \ddots & \vdots \\
\frac{\delta f_m(a)}{\delta x_1} & \cdots & \frac{\delta f_m(a)}{\delta x_n}
\end{pmatrix}
\]

Jacobi-Matrix von \(f \) an der Stelle \(a \).

Ist \(m = 1 \), (\(f = f_1 \)), \(f : U \subseteq \mathbb{R}^n \to \mathbb{R} \)
\[
\left(\frac{\delta f(a)}{\delta x_1}, \ldots, \frac{\delta f(a)}{\delta x_n} \right) \in \mathbb{R}^n
\]

Gradienten von \(f \) an der Stelle \(a \) \(= (\text{Grad } f)(a) \).

Ist \(f \) an allen Stellen des Definitionsbereichs partiell differenzierbar, so sind \(\frac{\delta f_i}{\delta x_j} : U \to \mathbb{R} \) selbst Funktionen, die man auch zusammenfasst zur Jacobi-Matrix von \(f \) bzw. Gradienten von \(f \).

13.11. Beispiel

a) \(f(x_1, x_2) = \sin(x_1 \cdot x_2), f : \mathbb{R}^2 \to \mathbb{R} \).

\(x_2 \) konstant halten, \(x_1 \) Variable:
\[
\frac{\delta f(x_1, x_2)}{\delta x_1} = \cos(x_1 \cdot x_2) \cdot x_2
\]

\(x_1 \) konstant halten, \(x_2 \) Variable:
\[
\frac{\delta f(x_1, x_2)}{\delta x_2} = \cos(x_1 \cdot x_2) \cdot x_1
\]

\(\text{Grad}(f) = (\cos(x_1 \cdot x_2) \cdot x_2, \cos(x_1 \cdot x_2) \cdot x_1) \)

\((\text{Grad}(f))(0,0) = (0,0) \).
b)

\[
f(x_1, x_2) = \begin{pmatrix} x_1^2 + x_2^2 \\ 2 - x_1 \cdot x_2 + x_2 \end{pmatrix}
\]

\[
\begin{align*}
\frac{\delta f_1}{\delta x_1} &= 2 \cdot x_1 \\
\frac{\delta f_1}{\delta x_2} &= 2 \cdot x_2 \\
\frac{\delta f_2}{\delta x_1} &= -x_2 \\
\frac{\delta f_2}{\delta x_2} &= -x_1 + 1
\end{align*}
\]

Jacobi-Matrix:

\[
\begin{pmatrix} 2 \cdot x_1 & 2 \cdot x_2 \\
-x_2 & -x_1 + 1 \end{pmatrix}
\]

c) \(f : \mathbb{R}^2 \to \mathbb{R} \)

\[
f(x_1, x_2) = \begin{pmatrix} e^{x_1 \cdot x_2} \\
x_1^2 + 2 \cdot x_1 \cdot x_2 \\
\sin(x_2) \end{pmatrix}
\]

Jacobi-Matrix von \(f \)

\[
\begin{pmatrix} e^{x_1 \cdot x_2} \cdot x_2 & e^{x_1 \cdot x_2} \cdot x_1 \\
2 \cdot x_1 + 2 \cdot x_2 & 2 \cdot x_1 \\
0 & \cos(x_2) \end{pmatrix}
\]

d)

\[
f(x_1, x_2) = \begin{cases}
\frac{x_1 \cdot x_2}{x_1^2 + x_2^2} & (x_1, x_2) \neq 0 \\
0 & (x_1, x_2) = (0, 0)
\end{cases}
\]

\((x_1, x_2) \neq (0, 0):\)

\[
\begin{align*}
\frac{\delta f(x_1, x_2)}{\delta x_1} &= \frac{x_2 \cdot (x_1^2 + x_2^2) - 2 \cdot x_1^2 \cdot x_2}{(x_1^2 + x_2^2)^2} \\
\frac{\delta f(x_1, x_2)}{\delta x_2} &= \frac{x_1 \cdot (x_1^2 + x_2^2) - 2 \cdot x_1 \cdot x_2}{(x_1^2 + x_2^2)^2}
\end{align*}
\]
\[
\frac{\delta f(0,0)}{\delta x_1} = \lim_{t \to 0} \frac{f(t,0)}{t} = \lim_{t \to 0} 0 = 0
\]
\[
\frac{\delta f(0,0)}{\delta x_2} = 0
\]

Also: \(f \) ist in ganz \(\mathbb{R}^2 \) partiell differenzierbar, aber nicht stetig in \((0,0) \) (13.8c).

(Gegensatz zum 1-dimensionalen Fall)

13.12. Kettenregel für partielle Ableitung

\(g : D \subseteq \mathbb{R}^n \to \mathbb{R}^m, h : E \subseteq \mathbb{R}^m \to \mathbb{R}^l \),

\(D, E \) offen, \(g(D) \subseteq E \).

\(g \) sei partiell differenzierbar in \(x_0 \in D \).

\(h \) sei partiell differenzierbar in \(y_0 = g(x_0) \).

Ist \(J_g(x_0) \) die Jacobi-Matrix von \(g \) an \(x_0 \),

ist \(J_h(y_0) \) die Jacobi-Matrix von \(h \) an \(y_0 \), so gilt

\[
J_{h \circ g}(x_0) = J_j(y_0) \cdot J_g(x_0)
\]

1-dimensional:

\[
(h \circ g)'(x_0) = h'(y_0) \cdot g'(x_0) = h'(g(x_0)) \cdot g'(x_0)
\]

13.13. Beispiel

\(f(x_1, x_2) = \sin(x_1 \cdot x_2), f = h \circ g, \)

\(g : \mathbb{R}^2 \to \mathbb{R}, g(x_1, x_2) = x_1 \cdot x_2, h : \mathbb{R} \to \mathbb{R}, h(x) = \sin(x) \).

\[
J_g(x_1, x_2) = (x_2, x_1)
\]
\[
J_h(x) = h'(x) = \cos(x)
\]
\[
(\text{Grad} f)(x_1, x_2) = J_f(x_1, x_2)
\]
\[
= J_{h \circ g}(x_1, x_2)
\]
\[
= J_h(g(x_1, x_2)) \cdot J_g(x_1, x_2)
\]
\[
= \cos(x_1 \cdot x_2) \cdot (x_2, x_1)
\]
\[
= (\cos(x_1 \cdot x_2) \cdot x_2, \cos(x_1 \cdot x_2) \cdot x_1)
\]
Bemerkung:
Existenz der partiellen Ableitung an Stelle \(a \) bedeutet z.B. für \(f : \mathbb{R}^2 \to \mathbb{R} \) Existenz von Tangenten in \(x \)- und \(y \)-Richtung.

\[
\begin{align*}
 f(x, y) &= 1 - |x| - |y| \\
 f(x, y) &= 1 - \min(|x|, |y|)
\end{align*}
\]

Wir wollen aber: Existenz einer Tangentialebene.

1-dimensionaler Fall:
\(f \) differenzierbar an \(a \): Tangente an \((a, f(a))\)

\[
l(x) = f(a) + f'(a) \cdot (x - a)
\]

sehr gute Approximation an \(f \) in der Nähe von \(a \):

\[
\lim_{x \to a} \frac{f(x) - l(x)}{x - a} = 0
\]

Im mehrdimensionalen Fall heißt „sehr gute lineare Approximation“ (entspricht: Existenz von Tangentialebene für \(f : \mathbb{R}^2 \to \mathbb{R} \))

\[
f(x) = f(a) + A \cdot (x - a) + R(x, a)
\]

mit

\[
\lim_{x \to a} \frac{R(x, a)}{\|x - a\|} = 0
\]

13.14. Definition

a) \(U \subseteq \mathbb{R}^n \) offen, \(f : U \to \mathbb{R}^m \) heißt \textit{stetig differenzierbar}, falls \(f \) nach allen Variablen partiell differenzierbar ist und die partielle Ableitung \(\frac{\delta L}{\delta x_j} : U \to \mathbb{R} \) \((i = 1, \ldots, m; j = 1, \ldots, n)\) stetige Funktion auf \(U \) sind.

\[
f(x_1, \ldots, x_n) = \begin{pmatrix} f_1(x_1, \ldots, x_n) \\ \vdots \\ f_m(x_1, \ldots, x_n) \end{pmatrix}
\]
b) f heißt 2-mal stetig differenzierbar, falls f stetig differenzierbar ist und partielle Ableitungen $\frac{\delta f_i}{\delta x_j}$ stetig differenzierbar sind.

Partielle Ableitung von $\frac{\delta f_i}{\delta x_j}$ nach x_k:

$$\frac{\delta^2 f_i}{\delta x_k \delta x_j}$$

$j = k$:

$$\frac{\delta^2 f_i}{(\delta x_j)^2}$$

c) Analog: s-mal stetig differenzierbar:

$$\frac{\delta^s f_i}{\delta x_{j_1} \cdots \delta x_{j_k}}$$

13.15. Beispiel

a) Polynomfunktionen sind s-mal stetig differenzierbar für alle $s \in \mathbb{N}$.

b) $f(x_1, x_2) = \begin{pmatrix} \sin(x_1) \\ \cos(x_2) \end{pmatrix}$

s-mal stetig differenzierbar für alle s.

c) Summe von s-mal stetig differenzierbaren Funktionen sind s-mal stetig differenzierbar.

Ebenso Hintereinanderausführung.

Produkt, Quotient von s-mal stetig differenzierbaren skalaren Funktionen sind s-mal stetig differenzierbar.

13.16. Satz (Schwarz)

a) Ist $f : U \rightarrow \mathbb{R}^m$, $U \subseteq \mathbb{R}$ offen, 2-mal stetig differenzierbar

$$f(x_1, \ldots, x_n) = \begin{pmatrix} f_1(x_1, \ldots, x_n) \\ \vdots \\ f_m(x_1, \ldots, x_n) \end{pmatrix}$$
So gilt
\[
\frac{\delta^2 f_i}{\delta x_k \delta x_j} = \frac{\delta^2 f_i}{\delta x_j \delta x_k}
\]

b) Ist \(f \) \(s \)-mal stetig differenzierbar, so kommt es bei den partiellen Ableitungen \(k \)-ter Ordnung (\(k \leq s \)) nicht auf die Reihenfolge an.

13.17. Beispiel
\[
f(x_1, x_2) = \sin(x_1 \cdot x_2) + e^{x_2}
\]
\[
\begin{align*}
\frac{\delta f}{\delta x_1} &= \cos(x_1 \cdot x_2) \cdot x_2 \\
\frac{\delta f}{\delta x_2} &= -\sin(x_1 \cdot x_2) \cdot x_1 \cdot x_2 + \cos(x_1 \cdot x_2) \\
\frac{\delta f}{\delta x_2} &= \cos(x_1 \cdot x_2) \cdot x_1 + e^{x_2} \\
\frac{\delta f}{\delta x_1} &= -\sin(x_1 \cdot x_2) \cdot x_1 \cdot x_2 + \cos(x_1 \cdot x_2)
\end{align*}
\]

13.18. Satz
\(U \subseteq \mathbb{R}^n \) offen, \(f : U \rightarrow \mathbb{R}^m \) stetig differenzierbar.
Dann gilt für alle \(a \in U \): Ist \(A = J_f(a) \) Jacobi-Matrix von \(f \) an der Stelle \(a \), so ist
\[
\lim_{x \rightarrow a} \frac{f(x) - f(a) - A \cdot (x - a)}{\| x - a \|} = 0
\]
(Sehr gute lineare Approximation)

Spezialfall: \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) stetig differenzierbar, dann ist
\[
f(a) + (\text{Grad}(f))(a) \cdot (x - a) = f(a) + \frac{\delta f}{\delta x_1}(a) \cdot (x_1 - a_1) + \frac{\delta f}{\delta x_2}(a) \cdot (x_2 - a_2)
\]

Gleichung der Tangentialebene von \(f \) an \(\left(\begin{array}{c} a_1 \\ a_2 \\ f(a_1, a_2) \end{array} \right) \).

\[f(x_1, x_2) = 1 - x_1^2 - x_2^2, \quad a = \left(\frac{1}{2}, \frac{1}{2} \right) \]

Tangentialebene:

\[E(x_1, x_2) = \frac{1}{2} - (x_1 - \frac{1}{2}) - (x_2 - \frac{1}{2}) \]
\[= \frac{3}{2} - x_1 - x_2 \]

13.20. Korollar

ist \(f \) stetig differenzierbar, so ist \(f \) stetig.

13.21. Definition

\(f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R} \) (skalare Funktion), \(U \) offen, 2-mal stetig differenzierbar.

\[H(f) = \left(\frac{\delta^2 f}{\delta x_i \delta x_j} \right)_{i,j=1,...,n} \]

\(H(f) \) Hesse-Matrix zu \(f \)

\(a \in U: \)

\[(H(f))(a) = \left(\frac{\delta^2 f}{\delta x_i \delta x_j} (a) \right) \]

Nach Voraussetzung und 13.16:

\[H(f) = H(f)^t \]

symmetrische Matrix

Es gilt:

Symmetrische \(n \times n \)-Matrix über \(\mathbb{R} \) hat \(n \) reelle Eigenwerte (mit Vielfachheit), d.h. charakteristisches Polynom zerfällt in Linearfaktoren.

13.22. Definition

\(U \subseteq \mathbb{R}^n, \ f : U \rightarrow \mathbb{R} \), \(U \) offen.

\(a \in U \) heißt lokale Minimum-/Maximumstelle, falls es eine Kugel \(B(a, r) \subseteq U \) gibt mit \(f(x) \leq f(a) \) bzw. \(f(x) \geq f(a) \) für alle \(x \in B(a, r) \).

\(f(a) \) heißt lokales Minimum/Maximum (lokale Extremalstelle, lokaler Extremwert).
13.23. Satz

\(U \subseteq \mathbb{R}^n \) offen, \(f : U \to \mathbb{R} \).

a) \(f \) sei stetig differenzierbar. Ist \(a \) lokal Extremstelle, so ist
\[
(Grad(f))(a) = (0, \ldots, 0)
\]

b) Sei \(f \) 2-mal stetig differenzierbar und \((Grad(f))(a) = (0, \ldots, 0). \)

1. Hat \((H(f))(a) \) \textit{alle} positive Eigenwerte, so ist \(a \) eine Minimalstelle.
2. Hat \((H(f))(a) \) \textit{alle} negative Eigenwerte, so ist \(a \) eine Maximalstelle.
3. Hat \((H(f))(a) \) sowohl positive als auch negative Eigenwerte, so ist \(a \) keine Extremstelle.
4. Sind alle Eigenwerte nicht negativ bzw. nicht positiv und kommt auch mindestens einmal 0 als Eigenwert vor, so kann man keine Aussage treffen.

\textbf{Beweis von a):}

\(f : U \subseteq \mathbb{R}^n \to \mathbb{R} \), Maximum/Minimum \(a \in U \).

Wähle \(v \in \mathbb{R}^n \).

Gerade in Richtung \(v \) durch \(a \):
\[
a + t \cdot v \quad t \in \mathbb{R}
\]

Auf Graph von \(f \) ergibt sich Kurve
\[
g(t) = f(a + t \cdot v)
\]

Hat \(f \) an der Stelle \(a \) ein Maximum/Minimum, so hat auch \(g \) ein Maximum/Minimum bei \(t = 0 \).
\[
g'(0) = 0
\]

Kettenregel:
\[
g'(t) = (Grad(f))(a + t \cdot v) \cdot v
\]
\[
g'(0) = (Grad(f))(a) \cdot v
\]
\[
= \left(\frac{\delta f}{\delta x_1}(a), \ldots, \frac{\delta f}{\delta x_n}(a) \right) \cdot \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}
\]
\[
= (\langle Grad(f)(a) \rangle \cdot v)
\]
\[
= 0 \quad \forall v \in V
\]
13.24. Beispiel

a) \(f(x_1, x_2) = x_1^2 + x_2^2 \)
\[
\text{Grad}(f) = (2 \cdot x_1, 2 \cdot x_2) \\
\overset{!}{=} (0, 0)
\]

\(x_1 = x_2 = 0 \)

\(H(f) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \)

2 positive Eigenwerte, also lokales Minimum bei \((0, 0)\).

b) \(f(x_1, x_2) = x_1^2 - x_2^2 \)
\[
\text{Grad}(f) = (2 \cdot x_1, -2 \cdot x_2) \\
\overset{!}{=} (0, 0)
\]

\(x_1 = x_2 = 0 \)

\(H(f) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \)

Eigenwerte: 2, -2, also kein Extremalwert.

c) \(f(x_1, x_2) = x_1^2 + x_2^4 \)
\[
(\text{Grad}(f))(x_1, x_2) = (2 \cdot x_1, 4 \cdot x_2^3) \\
\overset{!}{=} (0, 0)
\]

\(x_1 = x_2 = 0 \)

\(H(f) = \begin{pmatrix} 2 & 0 \\ 0 & 12x_2^2 \end{pmatrix} \)

\(H(f)(0, 0) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \)

Eigenwerte: 2, 0
Keine Aussage mit 13.23 möglich.
(Tatsächlich Minimum)
13.25. Geometrische Bedeutung von $\text{Grad}(f)$

$f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}, \ a \in U.$

Ist $v \in \mathbb{R}^n, \|v\| = 1$, so gilt für $g(t) = f(a + v \cdot t)$

\[
g'(0) = ((\text{Grad}(f))(a)|v) = \text{Steigung der Tangente an die Kurve } g \text{ an der Stelle } 0
\]

\[
= \text{Steigung des Graphen von } f \text{ in Richtung } v \text{ in } (a \ f(a))
\]

In welcher Richtung ist die Steigung am größten?

\[
(\text{Grad}(f)(a)|v) = \|\text{Grad}(f)(a)\| \cdot \|v\| \cdot \cos(\angle(\text{Grad}(f)(a), v))
\]

\[
= 1 \iff v \text{ liegt in derselben Richtung wie } (\text{Grad}(f)(a))
\]

Also:

$(\text{Grad}(f))(a)$ gibt die Richtung des steeisten Anstiegs des Graphen von f an der Stelle $(a \ f(a))$ an.

$f(x, y) = 1 - x^2 - y^2, \ a = (0.55, -0.65)$

\[
\text{Grad}(f) = (-2x, -2y) \\
\text{Grad}(f)(a) = (-1.1, 1.3)
\]

Steilster Anstieg in a: entlang $f(a + t \cdot (-1.1, 1.3))$.

Bemerkung:

Extrema mit Nebenbedingungen:

Beispiel:

Welches unter allen Rechtecken mit festem Umfang U hat größten Flächeninhalt? x, y Seitenlängen, Maximum $f(x, y) = x \cdot y$ unter der Nebenbedingung:

\[
2 \cdot (x + y) = U \\
y = \frac{U}{2} - x
\]
Maximum von

\[g(x) = \frac{x \cdot (U - 2 \cdot x)}{2} \]
\[= \frac{U}{2} \cdot x - x^2 \]

\[g'(x) = \frac{U}{2} - 2 \cdot x \]
\[= 0 \]
\[x = \frac{U}{4} \]
\[y = \frac{U}{4} \quad \text{Quadrat} \]

(Tatsächlich Maximum)

Problem, falls sich die Nebenbedingungen nach keiner der Variablen auflösen lässt.
Beispiel:

\[x \cdot \ln(x) + y \cdot \ln(y) = 2 \]

13.27. Definition

\[f : U \subseteq \mathbb{R}^n \to \mathbb{R}, \]
\[F_1 : U \subseteq \mathbb{R}^n \to \mathbb{R}, \ldots, F_r : U \subseteq \mathbb{R}^n \to \mathbb{R} \quad (1 \leq r \leq n), \]

Sei

\[M = \{ x \in \mathbb{R}^n : F_i(x) = 0, \; i = 1, \ldots, r \} \]
\[F = \begin{pmatrix} F_1 \\ \vdots \\ F_r \end{pmatrix} : U \subseteq \mathbb{R}^n \to \mathbb{R}^r \]
\[M = \{ x \in \mathbb{R}^n : F(x) = 0 \} \]

\[x_0 \in M \] heißt **Maximal-Stelle von** \(f \) unter der Nebenbedingung \(F(x) = 0 \), falls \(B(x_0, r) \subseteq U \) existiert mit

\[f(x) \leq f(x_0) \quad \forall x \in B(x_0, r) \cap M \]
\[f(x) \geq f(x_0) \quad \forall x \in B(x_0, r) \cap M \]

Extremalstellen von \(f_{|M} \).
13.28. Satz

Bezeichnungen wie in 13.27.
Rang von Jacobi-Matrix von \(F(x) \) sei gleich \(r \) für alle \(x \in U \).
Ist \(x_0 \) Extremalstelle von \(f \) unter der Nebenbedingung \(F(x) = 0 \), so existieren eindeutig bestimmte \(\lambda_1, \ldots, \lambda_r \in \mathbb{R} \) mit

\[
\begin{align*}
\frac{\delta f}{\delta x_1}(x_0) &= \lambda_1 \cdot \frac{\delta F_1}{\delta x_1}(x_0) + \ldots + \lambda_r \cdot \frac{\delta F_r}{\delta x_1}(x_0) \\
\vdots \\
\frac{\delta f}{\delta x_n}(x_0) &= \lambda_1 \cdot \frac{\delta F_1}{\delta x_n}(x_0) + \ldots + \lambda_r \cdot \frac{\delta F_r}{\delta x_n}(x_0)
\end{align*}
\]

\(\lambda_i \) heißen \textit{Lagrange-Multiplikatoren}.

\textbf{Vorgehen:}

Löse (nicht-lineares) Gleichungssystem

\[
\begin{align*}
F_1(x_1, \ldots, x_n) &= 0 \\
&\vdots \\
F_r(x_1, \ldots, x_n) &= 0
\end{align*}
\]

Es ist \(x = (x_1, \ldots, x_n) \).

\[
\begin{align*}
\frac{\delta f}{\delta x_1}(x) &= \lambda_1 \cdot \frac{\delta F_1}{\delta x_1}(x) + \ldots + \lambda_r \cdot \frac{\delta F_r}{\delta x_1}(x) \\
\vdots \\
\frac{\delta f}{\delta x_n}(x) &= \lambda_1 \cdot \frac{\delta F_1}{\delta x_n}(x) + \ldots + \lambda_r \cdot \frac{\delta F_r}{\delta x_n}(x)
\end{align*}
\]

nach den \(n + r \) Unbekannten \(x_1, \ldots, x_n, \lambda_1, \ldots, \lambda_r \).

13.29. Beispiel

Extremalstellen von \(f(x, y) = x + y \) unter der Nebenbedingung

\[
F(x, y) = x^2 \cdot y + x \cdot y^2 - 1 = 0
\]
\[
\begin{align*}
\frac{\delta f}{\delta x} &= 1 \\
\frac{\delta f}{\delta y} &= 1 \\
\frac{\delta F}{\delta x} &= 2 \cdot x \cdot y + y^2 \\
\frac{\delta F}{\delta y} &= x^2 + 2 \cdot x \cdot y \\
1 &= \lambda \cdot (2 \cdot x \cdot y + y^2) \\
1 &= \lambda \cdot (x^2 + 2 \cdot x \cdot y)
\end{align*}
\]

\(\lambda \neq 0:\)

\[
2 \cdot x \cdot y + y^2 = \frac{1}{\lambda} = x^2 + 2 \cdot x \cdot y \\
x^2 = y^2
\]

\(y = -x:\)

\[-x^3 + x^3 - 1 = 0 \quad \frac{\lambda}{\lambda} = 0
\]

\(y = x:\)

\[
2 \cdot x^3 - 1 = 0 \\
x^3 = \frac{1}{2} \\
x = y \\
= \frac{1}{\sqrt{2}}
\]

Einziger Kandidat für lokales Maximum/Minimum unter Nebenbedingung \(F(x, y) = 0\) ist \(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\) (Tatsächlich Minimum).
A. Fehlende Beweise

Die hier aufgeführten Beweise stammen von mir selbst und sollen kleinere Lücken im Skript füllen, um das Verständnis des Inhalts zu fördern.

A.1. Beweis zum Lemma 5.3 b) c)

V K-Vektorraum, $v \in V$, $a \in K$.

b) $a \cdot o = o$

c) $(-1) \cdot v = -v$

Beweis:

b)

\[
\begin{align*}
a \cdot o &= a \cdot (o + o) \\
 &= a \cdot o + a \cdot o & 5.1.(2b)
\end{align*}
\]

Da $(V, +)$ kommutative Gruppe:

\[
\begin{align*}
o &= a \cdot o - a \cdot o \\
 &= (a \cdot o + a \cdot o) - a \cdot o \\
 &= a \cdot o
\end{align*}
\]

c)

\[
\begin{align*}
(-1) \cdot v &= (-1) \cdot v + v - v \\
 &= (-1) \cdot v + 1 \cdot v - v & 5.1.(2d)
\end{align*}
\]

\[
\begin{align*}
 &= ((-1) + 1) \cdot v - v & 5.1.(2a)
 &= 0 \cdot v - v \\
 &= -v & 5.3(a)
\end{align*}
\]
A.2. Beweis zur Bemerkung aus 6.2

Wegen (2) und (3) gilt auch
\[
(v + w|u) = (v|u) + (w|u) \\
(a \cdot v|u) = a \cdot (v|u)
\]

für alle \(u, w, u \in V \) und für alle \(a \in \mathbb{R} \).
(Linearität im 1. Argument).

Beweis:

\[
(v + w|u) = (u|v + w) \\
= (u|v) + (u|w) \\
= (v|u) + (w|u)
\]

\[
(a \cdot v|u) = (u|a \cdot v) \\
= a \cdot (u|v) \\
= a \cdot (v|u)
\]

A.3. Beweis zur Bemerkung aus 6.12a)

Sei \(V \) Euklidischer Vektorraum, \(v \in V, v \neq o \) und \(w \) wie folgt definiert
\[
w := \frac{1}{\|v\|} \cdot v
\]

So gilt:
\[
\|w\| = 1
\]
Beweis:
\[
\frac{1}{\|v\|} \in \mathbb{R},
\]
Nach 6.7a) gilt: \(\|v\| \geq 0\), also \(\frac{1}{\|v\|} \geq 0\).

\[
\|w\| = \frac{1}{\|v\|} \cdot \|v\| = 1
\]

A.4. Beweis zu Satz 6.19 a) b) c)
Seien \(x, y, z \in \mathbb{R}^3\) und \(a \in \mathbb{R}\).

a) \((x \times y|x) = (x \times y|y) = 0\)

b) \(x \times y = -y \times x\)

c) \(x \times (y + z) = (x \times y) + (x \times z)\)

\[
x \times (a \cdot y) = a \cdot (x \times y)
\]
Analog in der 1. Komponente.

Beweis:

a)

\[
(x \times y|x) = \begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} \times \begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix} \cdot x
= \begin{pmatrix}
x_2y_3 - x_3y_2 \\
x_3y_1 - x_1y_3 \\
x_1y_2 - x_2y_1
\end{pmatrix} \cdot x \\
= (x_2y_3 - x_3y_2) \cdot x_1 + (x_3y_1 - x_1y_3) \cdot x_2 + (x_1y_2 - x_2y_1) \cdot x_3 \\
= x_1x_2y_3 - x_1x_3y_2 + x_2x_3y_1 - x_1x_2y_3 + x_1x_3y_2 - x_2x_3y_1 \\
= 0
\]
\[(x \times y) = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) \times \left(\begin{array}{c} y_1 \\ y_2 \\ y_3 \end{array} \right) y \]

\[= \left(\begin{array}{c} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{array} \right) y \]

\[= (x_2 y_3 - x_3 y_2) \cdot y_1 + (x_3 y_1 - x_1 y_3) \cdot y_2 + (x_1 y_2 - x_2 y_1) \cdot y_3 \]

\[= y_1 x_2 y_3 - y_1 x_3 y_2 + y_2 x_3 y_1 - x_1 y_2 y_3 + x_1 y_3 y_2 - x_2 y_3 y_1 \]

\[= 0 \]

b)

\[x \times y = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) \times \left(\begin{array}{c} y_1 \\ y_2 \\ y_3 \end{array} \right) \]

\[= \left(\begin{array}{c} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{array} \right) \]

\[= (x_2 y_3 - x_3 y_2) \cdot y_1 + (x_3 y_1 - x_1 y_3) \cdot y_2 + (x_1 y_2 - x_2 y_1) \cdot y_3 \]

\[= y_1 x_2 y_3 - y_1 x_3 y_2 + y_2 x_3 y_1 - x_1 y_2 y_3 + x_1 y_3 y_2 - x_2 y_3 y_1 \]

\[= y \times x \]

c)

\[x \times (y + z) = \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) \times \left(\begin{array}{c} y_1 + z_1 \\ y_2 + z_2 \\ y_3 + z_3 \end{array} \right) \]

\[= \left(\begin{array}{c} x_2 (y_3 + z_3) - x_3 (y_2 + z_2) \\ x_3 (y_1 + z_1) - x_1 (y_3 + z_3) \\ x_1 (y_2 + z_2) - x_2 (y_1 + z_1) \end{array} \right) \]

\[= (x_2 y_3 + x_2 z_3 - x_3 y_2 - x_3 z_2) \\
= x_3 y_1 + x_1 z_1 - x_1 y_3 - x_1 z_3 \\
= x_1 y_2 + x_1 z_2 - x_2 y_1 - x_2 z_1 \\
\]

\[= \left(x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \right) + \left(x_2 z_3 - x_3 z_2 \\ x_3 z_1 - x_1 z_3 \\ x_1 z_2 - x_2 z_1 \right) \]
\[\begin{aligned} x \times (a \cdot y) &= (x \times y) + (x \times z) \\
\end{aligned} \]

\[\begin{aligned} x \times (a \cdot y) &= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \times \begin{pmatrix} a \cdot y_1 \\ a \cdot y_2 \\ a \cdot y_3 \end{pmatrix} \\
&= \begin{pmatrix} \begin{pmatrix} x_2(a \cdot y_3) - x_3(a \cdot y_2) \\ x_3(a \cdot y_1) - x_1(a \cdot y_3) \\ x_1(a \cdot y_2) - x_2(a \cdot y_1) \end{pmatrix} \end{pmatrix} \\
&= \begin{pmatrix} a \cdot (x_2 y_3 - x_3 y_2) \\ a \cdot (x_3 y_1 - x_1 y_3) \\ a \cdot (x_1 y_2 - x_2 y_1) \end{pmatrix} \\
&= a \cdot \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix} \\
&= a \cdot (x \times y) \]

A.5. Zwischenbeweis

V, W Vektorräume, \(\alpha : V \to W \) lineare Abbildung, so gilt

\[\alpha(-v) = -\alpha(v) \quad \forall v \in V \]

Beweis:

\[\begin{aligned} o &= \alpha(o) \\
&= \alpha(-v + v) \\
&= \alpha(-v) + \alpha(v) \end{aligned} \]

Addition von \(-\alpha(v) \) auf beiden Seiten:

\[\begin{aligned} o - \alpha(v) &= \alpha(-v) + \alpha(v) - \alpha(v) \\
-\alpha(v) &= \alpha(-v) \end{aligned} \]
A.6. Beweis zu Satz 7.5 a) b) c)

Sei \(\alpha : V \to W \) lineare Abbildung.

a) \(\ker(\alpha) = \{ v \in V : \alpha(v) = o \} \) Kern von \(\alpha \) ist Unterraum von \(V \).

b) \(\alpha \) injektiv \(\iff \ker(\alpha) = \{ o \} \)

c) Ist \(\alpha \) bijektiv, so ist \(\alpha^{-1} : W \to V \) (bijektiv) lineare Abbildung.

Beweis:

a) Sei \(u_1, u_2 \in \ker(\alpha) \), \(a_1, a_2 \in K \).

Für \(u_1 \) und \(u_2 \) gilt also: \(\alpha(u_1) = \alpha(u_2) = o \).

\[
\alpha(a_1 \cdot u_1 + a_2 \cdot u_2) = \alpha(a_1 \cdot u_1) + \alpha(a_2 \cdot u_2) \\
= a_1 \cdot \alpha(u_1) + a_2 \cdot \alpha(u_2) \\
= a_1 \cdot o + a_2 \cdot o \\
= 5.3b) \quad o + o \\
= o
\]

Also \(a_1 \cdot u_1 + a_2 \cdot u_2 \in \ker(\alpha) \).

Nach 5.4b) folgt, \(\ker(\alpha) \) ist Unterraum von \(V \).

b) \(\Rightarrow \):

Angenommen \(\vert \ker(\alpha) \vert \geq 2 \), so gibt es \(u, v \in V \), \(u \neq v \), mit \(\alpha(u) = \alpha(v) = o \). Das ist jedoch ein Widerspruch zur Voraussetzung, dass \(\alpha \) injektiv ist.

Nach 7.2a) gilt \(\alpha(o) = o \), somit ist \(\ker(\alpha) = \{ o \} \).

\(\Leftarrow \):

Angenommen \(\alpha \) sei nicht injektiv, so existieren \(x, y \in V \), \(x \neq y \), mit \(\alpha(x) = \alpha(y) \).

Daraus folgt:

\[
\alpha(y^{-1} + x) = \alpha(y^{-1}) + \alpha(x) \\
= \alpha(y)^{-1} + \alpha(x) \\
= \alpha(x)^{-1} + \alpha(x) \\
= o
\]

Somit gilt \(y^{-1} + x \in \ker(\alpha) \).

Desweiteren gilt \(y^{-1} + x \neq o \).
Angenommen \(y^{-1} + x = o \).

\[
\begin{align*}
y^{-1} + x &= o \\
y + y^{-1} + x &= y + o \\
o + x &= y \\
x &= y
\end{align*}
\]

Damit gilt \(o \neq y^{-1} + x \in \ker(\alpha) \), was ein Widerspruch zur Annahme darstellt, dass gilt \(\ker(\alpha) = \{ o \} \).

Somit ist \(\alpha \) injektiv.

c) Seien \(k \in K, u, v \in V, a, b \in W \) mit \(\alpha(u) = a, \alpha(v) = b \).

Es gilt:

\[
\begin{align*}
\alpha^{-1}(a) + \alpha^{-1}(b) &= \alpha^{-1}(\alpha(u)) + \alpha^{-1}(\alpha(v)) \\
&= u + v \\
&= \alpha^{-1}(\alpha(u + v)) \\
&= \alpha^{-1}(\alpha(u) + \alpha(v)) \\
&= \alpha^{-1}(a + b)
\end{align*}
\]

\[
\begin{align*}
k \cdot \alpha^{-1}(a) &= k \cdot \alpha^{-1}(\alpha(u)) \\
&= k \cdot u \\
&= \alpha^{-1}(\alpha(k \cdot u)) \\
&= \alpha^{-1}(k \cdot \alpha(u)) \\
&= \alpha^{-1}(k \cdot a)
\end{align*}
\]

Somit ist \(\alpha^{-1} \) eine lineare Abbildung.

A.7. Beweis zu Satz 7.12 a)

\(U, V, W \) \(K \)-Vektorräume.

a) \(\alpha : V \to W \) linear, so auch \(k \cdot \alpha \) (\(k \in K \)).
Beweis:

a)

\[(k \cdot \alpha)(v_1 + v_2) = k \cdot \alpha(v_1 + v_2)\]
\[= k \cdot (\alpha(v_1) + \alpha(v_2))\]
\[= k \cdot \alpha(v_1) + k \cdot \alpha(v_2)\]
\[= (k \cdot \alpha(v_1)) + (k \cdot \alpha(v_2))\]

\[(k \cdot \alpha)(k' \cdot v_1) = k \cdot \alpha(k' \cdot v_1)\]
\[= k \cdot (k' \cdot \alpha(v_1))\]
\[= k' \cdot k \cdot \alpha(v_1)\]
\[= k' \cdot (k \cdot \alpha)(v_1)\]

Somit ist \(k \cdot \alpha\) eine lineare Abbildung.

A.8. Beweis zu Satz 8.8

\(\alpha, \beta \in L(V, W), \mathcal{B} \text{ Basis von } V, \mathcal{C} \text{ Basis von } W.\)

\[A_{\alpha+\beta}^{\mathcal{B}, \mathcal{C}} = A_{\alpha}^{\mathcal{B}, \mathcal{C}} + A_{\beta}^{\mathcal{B}, \mathcal{C}}\]

\[A_{k \cdot \alpha}^{\mathcal{B}, \mathcal{C}} = k \cdot A_{\alpha}^{\mathcal{B}, \mathcal{C}}\]

Beweis:

\(\mathcal{B} = (b_1, \ldots, b_n), \mathcal{C} = (c_1, \ldots, c_m)\)

Addition zweier Abbildungen:

\[\alpha + \beta)(v_j) = \alpha(v_j) + \beta(v_j)\]
\[= \sum_{i=1}^{m} a_{ij} \cdot w_i + \sum_{i=1}^{m} b_{ij} \cdot w_i\]
\[= \sum_{i=1}^{m} (a_{ij} + b_{ij}) \cdot w_i\]
Daraus folgt:

\[
A_{\alpha+\beta}^{B,\ell} = (a_{ij} + b_{ij})_{i=1,\ldots,m; j=1,\ldots,n} \\
= (a_{ij})_{i=1,\ldots,m; j=1,\ldots,n} + (b_{ij})_{i=1,\ldots,m; j=1,\ldots,n} \\
= A_{\alpha}^{B,\ell} + A_{\alpha}^{B,\ell}
\]

Multiplikation einer Abbildung mit einem Skalar:

\[
(k \cdot \alpha)(v_j) = k \cdot \alpha(v_j) \\
= k \cdot \sum_{i=1}^{m} a_{ij} \cdot w_i \\
= \sum_{i=1}^{m} k \cdot a_{ij} \cdot w_i
\]

Daraus folgt:

\[
A_{k\cdot\alpha}^{B,\ell} = (k \cdot a_{ij})_{i=1,\ldots,m; j=1,\ldots,n} \\
= k \cdot (a_{ij})_{i=1,\ldots,m; j=1,\ldots,n} \\
= k \cdot A_{\alpha}^{B,\ell}
\]

Falls die Produkte definiert sind, gilt:

\[
(B_1 + B_2) \cdot A = B_1 \cdot A + B_2 \cdot A \\
B \cdot (A_1 + A_2) = B \cdot A_1 + B \cdot A_2 \\
(k \cdot B) \cdot A = B \cdot (k \cdot A) \\
= k \cdot (B \cdot A) \\
(C \cdot B) \cdot A = C \cdot (B \cdot A)
\]

Im Allgemeinen ist \(A \cdot B \neq B \cdot A \) (selbst für quadratische Matrizen, siehe 8.11 b).
Beweis:

\[
\left(\begin{array}{c c}
B_1 & B_2
\end{array} \right)_{m \times n} \cdot A_{n \times l} = \left(\begin{array}{c c c c c c c c}
b_{11} & \ldots & b_{1n} & c_{11} & \ldots & c_{1n} & a_{11} & \ldots & a_{1l} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
b_{m1} & \ldots & b_{mn} & c_{m1} & \ldots & c_{mn} & a_{n1} & \ldots & a_{nl}
\end{array} \right)
\]

\[
= \left(\begin{array}{c c c c c c c c}
b_{11} + c_{11} & \ldots & b_{1n} + c_{1n} & a_{11} & \ldots & a_{1l} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
b_{m1} + c_{m1} & \ldots & b_{mn} + c_{mn} & a_{n1} & \ldots & a_{nl}
\end{array} \right)
\]

\[
= \sum_{i=1}^{n} (b_{1i} + c_{1i}) \cdot a_{i1} \ldots \sum_{i=1}^{n} (b_{1i} + c_{1i}) \cdot a_{il}
\]

\[
= \sum_{i=1}^{n} b_{1i} \cdot a_{i1} + c_{1i} \cdot a_{i1} \ldots \sum_{i=1}^{n} b_{1i} \cdot a_{il} + c_{1i} \cdot a_{il}
\]

\[
= \sum_{i=1}^{n} b_{mi} \cdot a_{i1} \ldots \sum_{i=1}^{n} b_{mi} \cdot a_{il}
\]

\[
= \sum_{i=1}^{n} b_{mi} \cdot a_{i1} \ldots \sum_{i=1}^{n} b_{mi} \cdot a_{il}
\]

\[
+ \left(\begin{array}{c c c c c c c c}
c_{11} & \ldots & c_{1n} & a_{11} & \ldots & a_{1l} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
c_{m1} & \ldots & c_{mn} & a_{n1} & \ldots & a_{nl}
\end{array} \right)
\]

\[
= B_1 \cdot A + B_2 \cdot A
\]
B. Tabellen

B.1. Winkelfunktionen und ihre Werte

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>¼π</th>
<th>π/4</th>
<th>π/3</th>
<th>π/2</th>
<th>π</th>
<th>3π/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin</td>
<td>0</td>
<td>1/2</td>
<td>1/2⋅√2</td>
<td>1/2⋅√3</td>
<td>1</td>
<td>0</td>
<td>−1</td>
</tr>
<tr>
<td>cos</td>
<td>1</td>
<td>1/2⋅√3</td>
<td>1/2⋅√2</td>
<td>1/2</td>
<td>0</td>
<td>−1</td>
<td>0</td>
</tr>
<tr>
<td>tan</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>√3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

B.2. Ableitungen und Stammfunktionen bekannter Funktionen

<table>
<thead>
<tr>
<th>f(x)</th>
<th>f'(x)</th>
<th>∫ f(x) dx</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^n, n ∈ ℤ, n ≠ −1</td>
<td>n ⋅ x^{n−1}</td>
<td>x^{n+1}/n+1 + c</td>
</tr>
<tr>
<td>x^{-1} = 1/x, x ≠ 0</td>
<td>-1/x</td>
<td>ln(</td>
</tr>
<tr>
<td>e^x = exp(x)</td>
<td>exp(x)</td>
<td>exp(x) + c</td>
</tr>
<tr>
<td>a^x, a > 0, a ≠ 1</td>
<td>ln(a) ⋅ a^x</td>
<td>1/ln(a) ⋅ a^x + c</td>
</tr>
<tr>
<td>sin(x)</td>
<td>cos(x)</td>
<td>−cos(x) + c</td>
</tr>
<tr>
<td>cos(x)</td>
<td>−sin(x)</td>
<td>sin(x) + c</td>
</tr>
<tr>
<td>ln(x), x ≥ 0</td>
<td>1/x</td>
<td>ln(x) ⋅ x − x + c</td>
</tr>
<tr>
<td>x^r, r ∈ ℝ, x ≥ 0</td>
<td>r ⋅ x^{r−1}</td>
<td>x^{r+1}/r+1 + c</td>
</tr>
<tr>
<td>tan(x), −π/2 < x < π/2</td>
<td>1 + tan^2(x)</td>
<td></td>
</tr>
<tr>
<td>arctan(x)</td>
<td>1/(1+x^2)</td>
<td>arctan x + c</td>
</tr>
<tr>
<td>arcsin(x), −1 < x < 1</td>
<td>1/√1−x^2</td>
<td>arcsin(x)</td>
</tr>
<tr>
<td>arccos(x)</td>
<td>−1/√1−x^2</td>
<td>arccos(x)</td>
</tr>
<tr>
<td>arccosh(x)</td>
<td>1/√x−1</td>
<td>arccosh(x)</td>
</tr>
</tbody>
</table>
Begründung zu a^x:

\[
\begin{align*}
 a^x &= \exp(\ln(a)^x) \\
 &= \exp(x \cdot \ln(a)) \\
 &= e^{x \cdot \ln(a)} \\
 \left(e^{x \cdot \ln(a)}\right)' &= e^{x \cdot \ln(a)} \cdot \ln(a)
\end{align*}
\]

Kettenregel

Begründung zu x^r:

\[
\begin{align*}
 x^r &= \exp(\ln(x)^r) \\
 &= \exp(r \cdot \ln(x)) \\
 &= e^{r \cdot \ln(x)} \\
 \left(e^{r \cdot \ln(x)}\right)' &= e^{r \cdot \ln(x)} \cdot r \cdot \frac{1}{x} \\
 &= x^r \cdot r \cdot \frac{1}{x} \\
 &= r \cdot x^{r-1}
\end{align*}
\]
Index

$m \times n$-Matrix, 95
(Euklidische-)Abstand, 70
(Euklidische-)Norm, 70
Abbildung
 affine, 156
Abgeschlossene Kugel, 177
Additionstheorem, 28
Additionstheoreme, 104
Adhärenzpunkt, 175
Adjunkte, 132
Affine Geometrie, 156
Arcuscosinus, 3
Arcussinus, 2
Arcustangens, 2
Basis, 55
 kanonische, 60
Basiswechselmatrix, 109
charakteristisches Polynom, 138
Darstellungsmatrix, 95
Determinante, 124
Determinantenmultiplikationssatz, 131
diagonalisierbar, 144
Dimension, 60
Eigenraum, 135
Eigenvektor, 135
Eigenwert, 135
Einheitsmatrix, 96
Erzeugendensystem, 48
Euklidischer Vektorraum, 68
Fourierkoeffizienten, 28
Fourierreihe, 28
Fourierreihen, 27
Fouriertransformation, 27
Funktion
 skalare, 174
 vektorwertige, 174
Gauß’sche Glockenkurve, 13
Gauß-Algorithmus, 165
geordnete, 94
Gerade Matrizen, 95
Grenzwert, 175
Hesse-Matrix, 184
homogen, 160
inhomogen, 160
Integral
 uneigentliches, 9
Integration
 durch Substitution, 5
 partielle, 3
invers, 105
isomorph, 82
Isomorphismus, 82
Jacobi-Matrix, 178
Kongruenzabbildung, 156
Koordinaten, 63
 kartesische, 63
Kronecker-Symbol, 96
Kugel
 abgeschlossene, 177
 offene, 177
Lagrange-Multiplikatoren, 189
linear abhängig, 51
linear unabhängig, 51
lineare Abbildung, 82

Mitschrieb von Rouven Walter
lineares Gleichungssystem, 159
Linearkombination, 42
Lö sung, 159
Lokales Maximum, 184
Lokales Minimum, 184

Matrix
orthogonale, 151
transponierte, 115
Matrixprodukt, 101

Nullmatrix, 95
Nullraum, 40
Nullvektor, 39

offen, 177
Offene Kugel, 177
orthogonal, 74
Orthogonalitätsrelation, 28
Orthogonalraum, 74
Orthonormalbasis, 75
Orthonormalsystem, 75

periodisch, 27
Polardarstellung, 37
Polynom
charakteristisches, 138

Rang, 91
Reihe
trigonometrische, 28

Satz von Taylor, 15
Schieberegister, 84
skalare Funktionen, 174
Skalarprodukt, 67
Skalarprodukttraum, 68
Spalte, 95
Spaltenform, 160
Spaltenrang, 114
Spaltenumformung
elementare, 117

Tangensfunktion, 1
Taylor-Entwicklung, 19
Taylorpolynom, 17

Taylorreihe, 21
Teilraum, 42
Translationen, 156

Unterraum, 42
affiner, 156

Vektor, 39
Vektorprodukt, 80
Vektorraum, 39
Vektorwertige Funktion, 174
Vergleichskriterium, 13

Winkel, 74
Winkelfunktionen, 1

Zeile, 95
Zeilenrang, 114
Zeilenumformung
elementare, 117